These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33799185)

  • 1. Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops.
    Tan TL; Zulkifli NA; Zaman ASK; Jusoh MB; Yaapar MN; Rashid SA
    Plant Physiol Biochem; 2021 May; 162():737-751. PubMed ID: 33799185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar.
    Jamaludin N; Tan TL; Zaman ASK; Sadrolhosseini AR; Rashid SA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops.
    Wang Y; Chan KX; Long SP
    Plant J; 2021 Jul; 107(2):343-359. PubMed ID: 34087011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of effective LAI and water use efficiency using Eddy Covariance data.
    Kompanizare M; Petrone RM; Macrae ML; De Haan K; Khomik M
    Sci Total Environ; 2022 Jan; 802():149628. PubMed ID: 34454157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid stomatal closure contributes to higher water use efficiency in major C4 compared to C3 Poaceae crops.
    Ozeki K; Miyazawa Y; Sugiura D
    Plant Physiol; 2022 May; 189(1):188-203. PubMed ID: 35134220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.
    Wang M; Xie B; Fu Y; Dong C; Hui L; Guanghui L; Liu H
    Photosynth Res; 2015 Dec; 126(2-3):351-62. PubMed ID: 25869633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.
    Sage TL; Sage RF
    Plant Cell Physiol; 2009 Apr; 50(4):756-72. PubMed ID: 19246459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do all leaf photosynthesis parameters of rice acclimate to elevated CO
    Cai C; Li G; Yang H; Yang J; Liu H; Struik PC; Luo W; Yin X; Di L; Guo X; Jiang W; Si C; Pan G; Zhu J
    Glob Chang Biol; 2018 Apr; 24(4):1685-1707. PubMed ID: 29076597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.
    Yin X; Struik PC
    J Exp Bot; 2015 Nov; 66(21):6535-49. PubMed ID: 26224881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acclimation of leaf photosynthesis of wheat and rice to seasonal temperature changes in T-FACE environments.
    Cai C; Li G; Di L; Ding Y; Fu L; Guo X; Struik PC; Pan G; Li H; Chen W; Luo W; Yin X
    Glob Chang Biol; 2020 Feb; 26(2):539-556. PubMed ID: 31505097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.
    Ding Z; Weissmann S; Wang M; Du B; Huang L; Wang L; Tu X; Zhong S; Myers C; Brutnell TP; Sun Q; Li P
    PLoS One; 2015; 10(10):e0140629. PubMed ID: 26465154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress and prospects of C
    Pradhan B; Panda D; Bishi SK; Chakraborty K; Muthusamy SK; Lenka SK
    Plant Biol (Stuttg); 2022 Oct; 24(6):920-931. PubMed ID: 35727191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
    Kromdijk J; Ubierna N; Cousins AB; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3443-57. PubMed ID: 24755278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS.
    Yin X; Struik PC
    J Exp Bot; 2017 Apr; 68(9):2345-2360. PubMed ID: 28379522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?
    Pignon CP; Jaiswal D; McGrath JM; Long SP
    J Exp Bot; 2017 Jan; 68(2):335-345. PubMed ID: 28110277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump.
    Jurić I; Hibberd JM; Blatt M; Burroughs NJ
    PLoS Comput Biol; 2019 Sep; 15(9):e1007373. PubMed ID: 31568503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C
    Wang S; Tholen D; Zhu XG
    Plant Cell Environ; 2017 Jan; 40(1):80-94. PubMed ID: 27628301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis.
    Miyake H
    Plant Cell Physiol; 2016 May; 57(5):890-6. PubMed ID: 26936788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different physiological responses of C3 and C4 plants to nanomaterials.
    Bai T; Zhang P; Guo Z; Chetwynd AJ; Zhang M; Adeel M; Li M; Guo K; Gao R; Li J; Hao Y; Rui Y
    Environ Sci Pollut Res Int; 2021 May; 28(20):25542-25551. PubMed ID: 33462686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.