BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33799210)

  • 1. Application of measuring electrochemical characteristics on plant root surfaces in screening Al-tolerant wheat.
    Dong G; Lu HL; Pan XY; He X; Jiang J; Li JY; Xu RK
    Environ Pollut; 2021 Jul; 281():116993. PubMed ID: 33799210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for initially selecting Al-tolerant rice varieties based on the charge characteristics of their roots.
    Lu HL; Dong G; Hua H; Zhao WR; Li JY; Xu RK
    Ecotoxicol Environ Saf; 2020 Jan; 187():109813. PubMed ID: 31644989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity of Cu
    Dong G; Nkoh JN; Hong ZN; Dong Y; Lu HL; Yang J; Pan XY; Xu RK
    Ecotoxicol Environ Saf; 2020 Jun; 196():110545. PubMed ID: 32276162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance.
    Han C; Ryan PR; Yan Z; Delhaize E
    Ann Bot; 2014 Jul; 114(1):135-44. PubMed ID: 24737716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Cd(II) adsorption onto rice roots on its uptake by different indica and japonica rice varieties and toxicity effect of Cd(II) under acidic conditions.
    Biswash MR; Li KW; Lu HL; Shi YX; Uwiringiyimana E; Guo L; Xu RK
    Environ Sci Pollut Res Int; 2024 May; 31(21):30399-30414. PubMed ID: 38607481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of root surface charge on the absorption and accumulation of Cu(II) by different japonica and indica rice varieties under acidic conditions.
    Biswash MR; Lu HL; Dong G; He X; Li JY; Xu RK
    Ecotoxicol Environ Saf; 2021 Oct; 223():112547. PubMed ID: 34330039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants.
    Liu W; Xu F; Lv T; Zhou W; Chen Y; Jin C; Lu L; Lin X
    Sci Total Environ; 2018 Jun; 627():462-469. PubMed ID: 29426169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Correlations of shoot and root growth and its role in screening for aluminum tolerance in wheat].
    Lin X; Zhang Y; Luo A
    Ying Yong Sheng Tai Xue Bao; 2002 Jun; 13(6):766-8. PubMed ID: 12216413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic acid metabolism and root excretion of malate in wheat cultivars under aluminium stress.
    de Andrade LR; Ikeda M; do Amaral LI; Ishizuka J
    Plant Physiol Biochem; 2011 Jan; 49(1):55-60. PubMed ID: 21055957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Aluminum Uptake by Excised Roots of Aluminum-Tolerant and Aluminum-Sensitive Cultivars of Triticum aestivum L.
    Zhang G; Taylor GJ
    Plant Physiol; 1989 Nov; 91(3):1094-9. PubMed ID: 16667117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum Partitioning in Intact Roots of Aluminum-Tolerant and Aluminum-Sensitive Wheat (Triticum aestivum L.) Cultivars.
    Rincón M; Gonzales RA
    Plant Physiol; 1992 Jul; 99(3):1021-8. PubMed ID: 16668966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars.
    Liu W; Liang L; Zhang X; Zhou Q
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8432-41. PubMed ID: 25548022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.
    Delhaize E; James RA; Ryan PR
    New Phytol; 2012 Aug; 195(3):609-619. PubMed ID: 22642366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat.
    He HY; He LF; Gu MH; Li XF
    Plant Sci; 2012 Feb; 183():123-30. PubMed ID: 22195585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Showing their mettle: extraradical mycelia of arbuscular mycorrhizae form a metal filter to improve host Al tolerance and P nutrition.
    Seguel A; Meier F; Azcón R; Valentine A; Meriño-Gergichevich C; Cornejo P; Aguilera P; Borie F
    J Sci Food Agric; 2020 Jan; 100(2):803-810. PubMed ID: 31612503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars.
    Naeem A; Saifullah ; Ghafoor A; Farooq M
    J Sci Food Agric; 2015 Sep; 95(12):2467-72. PubMed ID: 25355244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings.
    Shi GL; Zhu S; Meng JR; Qian M; Yang N; Lou LQ; Cai QS
    J Hazard Mater; 2015 May; 289():190-196. PubMed ID: 25725341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation.
    Dong Y; Wang H; Chang E; Zhao Z; Wang R; Xu R; Jiang J
    Chemosphere; 2019 Mar; 218():907-914. PubMed ID: 30609495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.