These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33799356)

  • 1. Mutual Support of Ligand- and Structure-Based Approaches-To What Extent We Can Optimize the Power of Predictive Model? Case Study of Opioid Receptors.
    Podlewska S; Kurczab R
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Step Protocol for Automatic Evaluation of Docking Results Based on Machine Learning Methods--A Case Study of Serotonin Receptors 5-HT(6) and 5-HT(7).
    Smusz S; Mordalski S; Witek J; Rataj K; Kafel R; Bojarski AJ
    J Chem Inf Model; 2015 Apr; 55(4):823-32. PubMed ID: 25806997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Machine Learning Framework Built Upon Molecular Representations Predicts CYP450 Inhibition: Toward Precision in Drug Repurposing.
    Ouzounis S; Panagiotopoulos V; Bafiti V; Zoumpoulakis P; Cavouras D; Kalatzis I; Matsoukas MT; Katsila T
    OMICS; 2023 Jul; 27(7):305-314. PubMed ID: 37406257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure.
    Jastrzębski S; Sieradzki I; Leśniak D; Tabor J; Bojarski AJ; Podlewska S
    Mol Divers; 2019 Aug; 23(3):603-613. PubMed ID: 30484023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated discovery of GPCR bioactive ligands.
    Raschka S
    Curr Opin Struct Biol; 2019 Apr; 55():17-24. PubMed ID: 30909105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-end learning for compound activity prediction based on binding pocket information.
    Tanebe T; Ishida T
    BMC Bioinformatics; 2021 Oct; 22(Suppl 3):529. PubMed ID: 34715777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOST: most-similar ligand based approach to target prediction.
    Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX;
    BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases.
    Mou Z; Eakes J; Cooper CJ; Foster CM; Standaert RF; Podar M; Doktycz MJ; Parks JM
    Proteins; 2021 Mar; 89(3):336-347. PubMed ID: 33118210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors.
    Boittier ED; Tang YY; Buckley ME; Schuurs ZP; Richard DJ; Gandhi NS
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction.
    Nogueira MS; Koch O
    J Chem Inf Model; 2019 Mar; 59(3):1238-1252. PubMed ID: 30802041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy and Complementarity between Focused Machine Learning and Physics-Based Simulation in Affinity Prediction.
    Cleves AE; Johnson SR; Jain AN
    J Chem Inf Model; 2021 Dec; 61(12):5948-5966. PubMed ID: 34890185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembling machine learning models to boost molecular affinity prediction.
    Druchok M; Yarish D; Garkot S; Nikolaienko T; Gurbych O
    Comput Biol Chem; 2021 Aug; 93():107529. PubMed ID: 34192653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Sure Can We Be about ML Methods-Based Evaluation of Compound Activity: Incorporation of Information about Prediction Uncertainty Using Deep Learning Techniques.
    Sieradzki I; Leśniak D; Podlewska S
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32210186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.