These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33799601)
21. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Palamidi A; Koumentakou I; Michopoulou A; Bikiaris DN; Terzopoulou Z Int J Pharm; 2024 Sep; 666():124776. PubMed ID: 39343329 [TBL] [Abstract][Full Text] [Related]
22. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
23. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951 [TBL] [Abstract][Full Text] [Related]
24. Engineering natural based nanocomposite inks via interface interaction for extrusion 3D printing. Maia JR; Castanheira E; Rodrigues JMM; Sobreiro-Almeida R; Mano JF Methods; 2023 Apr; 212():39-57. PubMed ID: 36934614 [TBL] [Abstract][Full Text] [Related]
25. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
26. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132 [TBL] [Abstract][Full Text] [Related]
28. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Yang Y; Zhang Q; Xu T; Zhang H; Zhang M; Lu L; Hao Y; Fuh JH; Zhao X Biomaterials; 2020 Dec; 263():120378. PubMed ID: 32932140 [TBL] [Abstract][Full Text] [Related]
29. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Hwang SH; Kim J; Heo C; Yoon J; Kim H; Lee SH; Park HW; Heo MS; Moon HE; Kim C; Paek SH; Jang J Acta Biomater; 2023 Feb; 157():137-148. PubMed ID: 36460287 [TBL] [Abstract][Full Text] [Related]
30. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. Shahbazi M; Jäger H ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287 [TBL] [Abstract][Full Text] [Related]
31. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Mondal D; Srinivasan A; Comeau P; Toh YC; Willett TL Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111400. PubMed ID: 33255003 [TBL] [Abstract][Full Text] [Related]
32. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
33. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity. Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117 [TBL] [Abstract][Full Text] [Related]
34. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266 [TBL] [Abstract][Full Text] [Related]
35. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980 [TBL] [Abstract][Full Text] [Related]
36. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related]
37. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Lu Y; Rai R; Nitin N Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721 [TBL] [Abstract][Full Text] [Related]
38. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Barrulas RV; Corvo MC Gels; 2023 Dec; 9(12):. PubMed ID: 38131974 [TBL] [Abstract][Full Text] [Related]
39. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
40. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. Jin Y; Shen Y; Yin J; Qian J; Huang Y ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]