These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33799624)

  • 21. A fine construction method of urban road DEM considering road morphological characteristics.
    Tao Y; Tian L; Wang C; Dai W; Xu Y
    Sci Rep; 2022 Sep; 12(1):14958. PubMed ID: 36056127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HSPF-based watershed-scale water quality modeling and uncertainty analysis.
    Roostaee M; Deng Z
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8971-8991. PubMed ID: 30719665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basin-wide flood depth and exposure mapping from SAR images and machine learning models.
    Hao C; Yunus AP; Siva Subramanian S; Avtar R
    J Environ Manage; 2021 Nov; 297():113367. PubMed ID: 34314958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams.
    Alfonso-Torreño A; Gómez-Gutiérrez Á; Schnabel S; Lavado Contador JF; de Sanjosé Blasco JJ; Sánchez Fernández M
    Sci Total Environ; 2019 Aug; 678():369-382. PubMed ID: 31077915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.
    Eker R; Aydın A; Hübl J
    Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sediment delivery ratio of single flood events and the influencing factors in a headwater basin of the Chinese Loess Plateau.
    Zheng M; Liao Y; He J
    PLoS One; 2014; 9(11):e112594. PubMed ID: 25389752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Channel morphological change monitoring using high-resolution LiDAR-derived DEM and multi-temporal imageries.
    Andualem TG; Peters S; Hewa GA; Myers BR; Boland J; Pezzaniti D
    Sci Total Environ; 2024 Apr; 921():171104. PubMed ID: 38401728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques.
    Chang KT; Merghadi A; Yunus AP; Pham BT; Dou J
    Sci Rep; 2019 Aug; 9(1):12296. PubMed ID: 31444375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observations on the May 2019 Joffre Peak landslides, British Columbia.
    Friele P; Millard TH; Mitchell A; Allstadt KE; Menounos B; Geertsema M; Clague JJ
    Landslides; 2020; 17(4):913-930. PubMed ID: 32355468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain.
    Vélez S; Ariza-Sentís M; Valente J
    Data Brief; 2023 Dec; 51():109686. PubMed ID: 37915834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flood hazard mapping using geospatial techniques and satellite images-a case study of coastal district of Tamil Nadu.
    Thirumurugan P; Krishnaveni M
    Environ Monit Assess; 2019 Feb; 191(3):193. PubMed ID: 30810867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field assessment of flood event suspended sediment transport from ephemeral streams in the tropical semi-arid catchments.
    Ondieki CM
    Environ Monit Assess; 1995 Mar; 35(1):43-54. PubMed ID: 24202211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.
    Cho H; Hong S; Kim S; Park H; Park I; Sohn HG
    Sensors (Basel); 2015 Sep; 15(9):23514-35. PubMed ID: 26389918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategic disposal of flood debris via CO
    Choi D; Jung S; Jung MK; Park YK; Tsang YF; Kwon HH; Kwon EE
    J Hazard Mater; 2021 Jun; 412():125242. PubMed ID: 33524733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survey of the vaia storm deposits in the tegnas catchment (Dolomites, Italy): Field data and evidence of sediment-water flow types.
    Brenna A; Surian N; Ghinassi M; Marchi L
    Data Brief; 2020 Dec; 33():106415. PubMed ID: 33134445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Spatiotemporal Characteristics of Flow-Sediment Relationships in a Hilly Watershed of the Chinese Loess Plateau.
    Wang L; Yao W; Xiao P; Hou X
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.
    Crossman J; Futter MN; Whitehead PG
    PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution.
    Thomas IA; Jordan P; Mellander PE; Fenton O; Shine O; Ó hUallacháin D; Creamer R; McDonald NT; Dunlop P; Murphy PN
    Sci Total Environ; 2016 Jun; 556():276-90. PubMed ID: 26974575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the effects of multiple extreme floods on flow and transport processes under competing flood protection and environmental management strategies.
    Tu T; Carr KJ; Ercan A; Trinh T; Kavvas ML; Nosacka J
    Sci Total Environ; 2017 Dec; 607-608():613-622. PubMed ID: 28709095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.