These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 33799639)
41. Ye Z; Moreb EA; Li S; Lebeau J; Menacho-Melgar R; Munson M; Lynch MD ACS Synth Biol; 2021 Jan; 10(1):29-37. PubMed ID: 33331764 [TBL] [Abstract][Full Text] [Related]
42. Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Howard JA; Delmas S; Ivančić-Baće I; Bolt EL Biochem J; 2011 Oct; 439(1):85-95. PubMed ID: 21699496 [TBL] [Abstract][Full Text] [Related]
43. Anti-CRISPR AcrIE2 Binds the Type I-E CRISPR-Cas Complex But Does Not Block DNA Binding. Mejdani M; Pawluk A; Maxwell KL; Davidson AR J Mol Biol; 2021 Feb; 433(3):166759. PubMed ID: 33338493 [TBL] [Abstract][Full Text] [Related]
44. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Hu C; Myers MT; Zhou X; Hou Z; Lozen ML; Nam KH; Zhang Y; Ke A Mol Cell; 2024 Feb; 84(3):463-475.e5. PubMed ID: 38242128 [TBL] [Abstract][Full Text] [Related]
45. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3. Hou Z; Hu C; Ke A; Zhang Y Curr Protoc; 2022 Feb; 2(2):e361. PubMed ID: 35129865 [TBL] [Abstract][Full Text] [Related]
46. 5'-Single-stranded/duplex DNA junctions are loading sites for E. coli UvrD translocase. Tomko EJ; Jia H; Park J; Maluf NK; Ha T; Lohman TM EMBO J; 2010 Nov; 29(22):3826-39. PubMed ID: 20877334 [TBL] [Abstract][Full Text] [Related]
47. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein. Pawluk A; Shah M; Mejdani M; Calmettes C; Moraes TF; Davidson AR; Maxwell KL mBio; 2017 Dec; 8(6):. PubMed ID: 29233895 [TBL] [Abstract][Full Text] [Related]
48. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. Jia H; Korolev S; Niedziela-Majka A; Maluf NK; Gauss GH; Myong S; Ha T; Waksman G; Lohman TM J Mol Biol; 2011 Aug; 411(3):633-48. PubMed ID: 21704638 [TBL] [Abstract][Full Text] [Related]
49. Structural determinants of DNA cleavage by a CRISPR HNH-Cascade system. Hirano S; Altae-Tran H; Kannan S; Macrae RK; Zhang F Mol Cell; 2024 Aug; 84(16):3154-3162.e5. PubMed ID: 39111310 [TBL] [Abstract][Full Text] [Related]
50. Functional and structural heterogeneity of the DNA binding site of the Escherichia coli primary replicative helicase DnaB protein. Jezewska MJ; Rajendran S; Bujalowski W J Biol Chem; 1998 Apr; 273(15):9058-69. PubMed ID: 9535894 [TBL] [Abstract][Full Text] [Related]
51. Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV). Hu T; Ji Q; Ke X; Zhou H; Zhang S; Ma S; Yu C; Ju W; Lu M; Lin Y; Ou Y; Zhou Y; Xiao Y; Xu C; Hu C Commun Biol; 2024 Jul; 7(1):858. PubMed ID: 39003402 [TBL] [Abstract][Full Text] [Related]
52. Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex. Dillard KE; Brown MW; Johnson NV; Xiao Y; Dolan A; Hernandez E; Dahlhauser SD; Kim Y; Myler LR; Anslyn EV; Ke A; Finkelstein IJ Cell; 2018 Nov; 175(4):934-946.e15. PubMed ID: 30343903 [TBL] [Abstract][Full Text] [Related]
53. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Mulepati S; Héroux A; Bailey S Science; 2014 Sep; 345(6203):1479-84. PubMed ID: 25123481 [TBL] [Abstract][Full Text] [Related]
54. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Majumdar S; Terns MP Extremophiles; 2019 Jan; 23(1):19-33. PubMed ID: 30284045 [TBL] [Abstract][Full Text] [Related]
55. Structure and genome editing of type I-B CRISPR-Cas. Lu M; Yu C; Zhang Y; Ju W; Ye Z; Hua C; Mao J; Hu C; Yang Z; Xiao Y Nat Commun; 2024 May; 15(1):4126. PubMed ID: 38750051 [TBL] [Abstract][Full Text] [Related]
56. An oligomeric form of E. coli UvrD is required for optimal helicase activity. Ali JA; Maluf NK; Lohman TM J Mol Biol; 1999 Nov; 293(4):815-34. PubMed ID: 10543970 [TBL] [Abstract][Full Text] [Related]
57. The T4 phage SF1B helicase Dda is structurally optimized to perform DNA strand separation. He X; Byrd AK; Yun MK; Pemble CW; Harrison D; Yeruva L; Dahl C; Kreuzer KN; Raney KD; White SW Structure; 2012 Jul; 20(7):1189-200. PubMed ID: 22658750 [TBL] [Abstract][Full Text] [Related]
58. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Hao M; Wang Z; Qiao H; Yin P; Qiao J; Qi H Cells; 2020 Feb; 9(2):. PubMed ID: 32085579 [TBL] [Abstract][Full Text] [Related]
59. A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions. Wang J; Chen R; Julin DA J Biol Chem; 2000 Jan; 275(1):507-13. PubMed ID: 10617645 [TBL] [Abstract][Full Text] [Related]
60. Multistep sequential mechanism of Escherichia coli helicase PriA protein-ssDNA interactions. Kinetics and energetics of the active ssDNA-searching site of the enzyme. Galletto R; Jezewska MJ; Bujalowski W Biochemistry; 2004 Aug; 43(34):11002-16. PubMed ID: 15323559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]