BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33799781)

  • 1. Zymography for Picogram Detection of Lipase and Esterase Activities.
    Ng AMJ; Zhang H; Nguyen GKT
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis activity-based zymography for detection of lipases and esterases.
    Kwon MA; Kim HS; Hahm DH; Song JK
    Biotechnol Lett; 2011 Apr; 33(4):741-6. PubMed ID: 21120585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zymography Detection of a Bacterial Extracellular Thermoalkaline Esterase/Lipase Activity.
    Tapizquent M; Fernández M; Barreto G; Hernández Z; Contreras LM; Kurz L; Wilkesman J
    Methods Mol Biol; 2017; 1626():295-300. PubMed ID: 28608222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates.
    Reyes-Duarte D; Coscolín C; Martínez-Martínez M; Ferrer M; García-Arellano H
    Methods Mol Biol; 2018; 1835():109-117. PubMed ID: 30109647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases.
    Schmidinger H; Birner-Gruenberger R; Riesenhuber G; Saf R; Susani-Etzerodt H; Hermetter A
    Chembiochem; 2005 Oct; 6(10):1776-81. PubMed ID: 16094692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Screening Assays for Lipolytic Enzymes.
    Fulton A; Hayes MR; Schwaneberg U; Pietruszka J; Jaeger KE
    Methods Mol Biol; 2018; 1685():209-231. PubMed ID: 29086311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity.
    Żądło-Dobrowolska A; Szczygieł M; Koszelewski D; Paprocki D; Ostaszewski R
    Org Biomol Chem; 2016 Sep; 14(38):9146-9150. PubMed ID: 27714153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multisubstrate assay for lipases/esterases: assessing acyl chain length selectivity by reverse-phase high-performance liquid chromatography.
    Divakar K; Gautam P
    Anal Biochem; 2014 Mar; 448():38-40. PubMed ID: 24316114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five-substrate cocktail as a sensor array for measuring enzyme activity fingerprints of lipases and esterases.
    Maillard N; Babiak P; Syed S; Biswas R; Mandrich L; Manco G; Reymond JL
    Anal Chem; 2011 Feb; 83(4):1437-42. PubMed ID: 21244092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Detection of Thermophilic Lipase and Protease by Zymography.
    Kurz L; Hernández Z; Contreras LM; Wilkesman J
    Methods Mol Biol; 2017; 1626():271-277. PubMed ID: 28608219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential activity-based gel electrophoresis for comparative analysis of lipolytic and esterolytic activities.
    Morak M; Schmidinger H; Krempl P; Rechberger G; Kollroser M; Birner-Gruenberger R; Hermetter A
    J Lipid Res; 2009 Jul; 50(7):1281-92. PubMed ID: 19282273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed carbonates as useful substrates for a fluorogenic assay for lipases and esterases.
    Zadlo A; Koszelewski D; Borys F; Ostaszewski R
    Chembiochem; 2015 Mar; 16(4):677-82. PubMed ID: 25648400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer membrane ion-selective electrodes as a convenient tool for lipases and esterases assays.
    Cieplak M; Ostaszewski R
    Prep Biochem Biotechnol; 2017 Aug; 47(7):673-677. PubMed ID: 28277945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The esterase profile of a lipase from Candida cylindracea.
    Brahimi-Horn MC; Guglielmino ML; Elling L; Sparrow LG
    Biochim Biophys Acta; 1990 Jan; 1042(1):51-4. PubMed ID: 2297523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative turbidity assay for lipolytic enzymes in microtiter plates.
    Barig S; Schiemann M; Mirsky VM; Stahmann KP
    Anal Bioanal Chem; 2013 Oct; 405(26):8539-47. PubMed ID: 23989965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of individual domains' functionality in fused lipolytic biocatalysts based on Geobacillus lipases and esterases.
    Savickaite A; Druteika G; Sadauskas M; Malunavicius V; Lastauskiene E; Gudiukaite R
    Int J Biol Macromol; 2021 Jan; 168():261-271. PubMed ID: 33301847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far-red fluorogenic probes for esterase and lipase detection.
    Tallman KR; Beatty KE
    Chembiochem; 2015 Jan; 16(1):70-5. PubMed ID: 25469918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed-substrate (glycerol tributyrate and fibrin) zymography for simultaneous detection of lipolytic and proteolytic enzymes on a single gel.
    Choi NS; Choi JH; Kim BH; Han YJ; Kim JS; Lee SG; Song JJ
    Electrophoresis; 2009 Jun; 30(12):2234-7. PubMed ID: 19544489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of droplet-based microfluidic platforms as a convenient tool for lipases and esterases assays.
    Jankowski P; Samborski A; Ostaszewski R; Garstecki P
    Prep Biochem Biotechnol; 2019; 49(7):727-734. PubMed ID: 31017519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome.
    Bunterngsook B; Kanokratana P; Thongaram T; Tanapongpipat S; Uengwetwanit T; Rachdawong S; Vichitsoonthonkul T; Eurwilaichitr L
    Biosci Biotechnol Biochem; 2010; 74(9):1848-54. PubMed ID: 20834152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.