BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 33800001)

  • 1. 3D-Printed Collagen Scaffolds Promote Maintenance of Cryopreserved Patients-Derived Melanoma Explants.
    Jeong YM; Bang C; Park M; Shin S; Yun S; Kim CM; Jeong G; Chung YJ; Yun WS; Lee JH; Jin S
    Cells; 2021 Mar; 10(3):. PubMed ID: 33800001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transwell-Hypoxia Method Facilitates the Outgrowth of 3D-Printed Collagen Scaffolds Loaded with Cryopreserved Patient-Derived Melanoma Explants.
    Park M; Bang C; Yun WS; Jin S; Jeong YM
    ACS Appl Bio Mater; 2022 Nov; 5(11):5302-5309. PubMed ID: 36265170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a bioprinting approach for automated manufacturing of multi-cell type biocomposite TRACER strips using contact capillary-wicking.
    Li NT; Rodenhizer D; Mou J; Shahaj A; Samardzic K; McGuigan AP
    Biofabrication; 2019 Oct; 12(1):015001. PubMed ID: 31553953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing to construct in vitro multicellular models of melanoma.
    Sang S; Wang X; Duan J; Cao Y; Shen Z; Sun L; Duan Q; Liu Z
    Biotechnol Bioeng; 2023 Oct; 120(10):2853-2864. PubMed ID: 37227037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.
    Reid JA; Mollica PA; Johnson GD; Ogle RC; Bruno RD; Sachs PC
    Biofabrication; 2016 Jun; 8(2):025017. PubMed ID: 27271208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting.
    Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J
    Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing.
    Miskolczi Z; Smith MP; Rowling EJ; Ferguson J; Barriuso J; Wellbrock C
    Oncogene; 2018 Jun; 37(23):3166-3182. PubMed ID: 29545604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.
    Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D
    J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation.
    Bandyopadhyay A; Mandal BB
    Biofabrication; 2019 Oct; 12(1):015003. PubMed ID: 31480031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.
    Du M; Chen B; Meng Q; Liu S; Zheng X; Zhang C; Wang H; Li H; Wang N; Dai J
    Biofabrication; 2015 Dec; 7(4):044104. PubMed ID: 26684899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways.
    Hu Y; Jia Y; Wang H; Cao Q; Yang Y; Zhou Y; Tan T; Huang X; Zhou Q
    J Biomater Appl; 2022 Sep; 37(3):402-414. PubMed ID: 35574901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture.
    Theodoridis K; Aggelidou E; Manthou M; Demiri E; Bakopoulou A; Kritis A
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110403. PubMed ID: 31400614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.
    Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H
    Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microphthalmia-associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation.
    Vachtenheim J; Ondrušová L
    Exp Dermatol; 2015 Jul; 24(7):481-4. PubMed ID: 25866058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.