These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33800235)

  • 1. Novel Strategy to Combat Antibiotic Resistance: A Sight into the Combination of CRISPR/Cas9 and Nanoparticles.
    Wan F; Draz MS; Gu M; Yu W; Ruan Z; Luo Q
    Pharmaceutics; 2021 Mar; 13(3):. PubMed ID: 33800235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections.
    Verma R; Sahu R; Singh DD; Egbo TE
    Semin Cell Dev Biol; 2019 Dec; 96():44-52. PubMed ID: 30986568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens.
    Bhattacharjee R; Nandi A; Mitra P; Saha K; Patel P; Jha E; Panda PK; Singh SK; Dutt A; Mishra YK; Verma SK; Suar M
    Mater Today Bio; 2022 Jun; 15():100291. PubMed ID: 35711292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci.
    Rodrigues M; McBride SW; Hullahalli K; Palmer KL; Duerkop BA
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31527030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy.
    Hussain Y; Khan H; Ahmad I; Efferth T; Alam W
    Phytomedicine; 2022 Jan; 94():153830. PubMed ID: 34775359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.
    Kim JS; Cho DH; Park M; Chung WJ; Shin D; Ko KS; Kweon DH
    J Microbiol Biotechnol; 2016 Feb; 26(2):394-401. PubMed ID: 26502735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing.
    Yang Y; Qiu JG; Li Y; Di JM; Zhang WJ; Jiang QW; Zheng DW; Chen Y; Wei MN; Huang JR; Wang K; Shi Z
    Am J Transl Res; 2016; 8(9):3986-3994. PubMed ID: 27725879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System.
    Getahun YA; Ali DA; Taye BW; Alemayehu YA
    Vet Med (Auckl); 2022; 13():173-190. PubMed ID: 35983086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in CRISPR/Cas9 Delivery Strategies.
    Yip BH
    Biomolecules; 2020 May; 10(6):. PubMed ID: 32486234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy.
    Zhang BC; Luo BY; Zou JJ; Wu PY; Jiang JL; Le JQ; Zhao RR; Chen L; Shao JW
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57362-57372. PubMed ID: 33301289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections.
    Wu Y; Battalapalli D; Hakeem MJ; Selamneni V; Zhang P; Draz MS; Ruan Z
    J Nanobiotechnology; 2021 Dec; 19(1):401. PubMed ID: 34863214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of CRISPR/Cas9 for therapeutic genome editing.
    Xu X; Wan T; Xin H; Li D; Pan H; Wu J; Ping Y
    J Gene Med; 2019 Jul; 21(7):e3107. PubMed ID: 31237055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in CRISPR/Cas9 Technology for in Vivo Translation.
    Çiçek YA; Luther DC; Kretzmann JA; Rotello VM
    Biol Pharm Bull; 2019; 42(3):304-311. PubMed ID: 30828060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review.
    Al-Fadhli AH; Jamal WY
    Front Cell Infect Microbiol; 2024; 14():1410115. PubMed ID: 38994001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
    Akram F; Ikram Ul Haq ; Ahmed Z; Khan H; Ali MS
    Protein Pept Lett; 2020; 27(10):931-944. PubMed ID: 32264803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.