BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33800410)

  • 1. Investigation on the Mass Distribution and Chemical Compositions of Various Ionic Liquids-Extracted Coal Fragments and Their Effects on the Electrochemical Performance of Coal-Derived Carbon Nanofibers (CCNFs).
    Tan S; Kraus TJ; Helling MR; Mignon RK; Basile F; Li-Oakey KD
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33800410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti₃SiC₂/Carbon Nanofibers Fabricated by Electrospinning as Electrode Material for High-Performance Supercapacitors.
    Yan W; Bi J; Wang W; Sun X; Liu R; Hao X; Gao X
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6441-6449. PubMed ID: 32384996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.
    Peng W; Li H; Song S
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5204-5212. PubMed ID: 28098967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
    Guo N; Li M; Wang Y; Sun X; Wang F; Yang R
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33626-33634. PubMed ID: 27960404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors.
    Qian W; Li X; Zhu X; Hu Z; Zhang X; Luo G; Yao H
    RSC Adv; 2020 Feb; 10(14):8172-8180. PubMed ID: 35702398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.
    Yang CH; Huang PL; Luo XF; Wang CH; Li C; Wu YH; Chang JK
    ChemSusChem; 2015 May; 8(10):1779-86. PubMed ID: 25900279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors.
    Yang W; Li Y; Feng Y
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO
    Sham Lal M; Lavanya T; Ramaprabhu S
    Beilstein J Nanotechnol; 2019; 10():781-793. PubMed ID: 31019865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.
    Li GR; Feng ZP; Ou YN; Wu D; Fu R; Tong YX
    Langmuir; 2010 Feb; 26(4):2209-13. PubMed ID: 20067294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes.
    Jung KH; Ferraris JP
    Nanotechnology; 2016 Oct; 27(42):425708. PubMed ID: 27632072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Polyaniline Nanofibers Anchored on Carbon Paper for High-Performance and Light-Weight Supercapacitors.
    Rahman SU; Röse P; Surati M; Shah AUHA; Krewer U; Bilal S
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical energy storage performance of carbon nanofiber electrodes derived from 6FDA-durene.
    Jung KH; Panapitiya N; Ferraris JP
    Nanotechnology; 2018 Jul; 29(27):275701. PubMed ID: 29629876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen, Phosphorus and Sulfur Co-Doped Pyrolyzed Bacterial Cellulose Nanofibers for Supercapacitors.
    Li Z; Wang Y; Xia W; Gong J; Jia S; Zhang J
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag nanoparticles-decorated CoAl-layered double hydroxide flower-like hollow microspheres for enhanced energy storage performance.
    Liu Y; Yu C; Che H; Guo Z; Mu J; Zhang X; Liu A
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):485-495. PubMed ID: 32810725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic Liquid Mixture Electrolyte Matching Porous Carbon Electrodes for Supercapacitors.
    Zhao Y; Chen Y; Du Q; Zhuo K; Yang L; Sun D; Bai G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhu J; Zhang Q; Chen H; Zhang R; Liu L; Yu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43634-43645. PubMed ID: 32909429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.