These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33800436)

  • 1. In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies.
    Jorgensen C; Simon M
    Cells; 2021 Mar; 10(3):. PubMed ID: 33800436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?
    Kahraman E; Ribeiro R; Lamghari M; Neto E
    Front Immunol; 2022; 13():802440. PubMed ID: 35359987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Advances in 3D Tissue and Organ Reconstruction.
    Pennarossa G; Arcuri S; De Iorio T; Gandolfi F; Brevini TAL
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting technologies for disease modeling.
    Memic A; Navaei A; Mirani B; Cordova JAV; Aldhahri M; Dolatshahi-Pirouz A; Akbari M; Nikkhah M
    Biotechnol Lett; 2017 Sep; 39(9):1279-1290. PubMed ID: 28550360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
    Ma X; Qu X; Zhu W; Li YS; Yuan S; Zhang H; Liu J; Wang P; Lai CS; Zanella F; Feng GS; Sheikh F; Chien S; Chen S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2206-11. PubMed ID: 26858399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling.
    Shukla P; Yeleswarapu S; Heinrich MA; Prakash J; Pati F
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35512666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells.
    Sbrana FV; Pinos R; Barbaglio F; Ribezzi D; Scagnoli F; Scarfò L; Redwan IN; Martinez H; Farè S; Ghia P; Scielzo C
    Front Immunol; 2021; 12():639572. PubMed ID: 34012434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
    Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A
    Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Cell Culturing and Possibilities for Myometrial Tissue Engineering.
    Heidari Kani M; Chan EC; Young RC; Butler T; Smith R; Paul JW
    Ann Biomed Eng; 2017 Jul; 45(7):1746-1757. PubMed ID: 27770218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond 2D: 3D bioprinting for skin regeneration.
    Wang R; Wang Y; Yao B; Hu T; Li Z; Huang S; Fu X
    Int Wound J; 2019 Feb; 16(1):134-138. PubMed ID: 30240111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ Bioprinting: Are We There Yet?
    Gao G; Huang Y; Schilling AF; Hubbell K; Cui X
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organ-on-chip models: Implications in drug discovery and clinical applications.
    Mittal R; Woo FW; Castro CS; Cohen MA; Karanxha J; Mittal J; Chhibber T; Jhaveri VM
    J Cell Physiol; 2019 Jun; 234(6):8352-8380. PubMed ID: 30443904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers.
    Dai X; Liu L; Ouyang J; Li X; Zhang X; Lan Q; Xu T
    Sci Rep; 2017 May; 7(1):1457. PubMed ID: 28469183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
    Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J
    Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Bioprinted Volumetric Tumor Microenvironments In Vitro.
    Li J; Parra-Cantu C; Wang Z; Zhang YS
    Trends Cancer; 2020 Sep; 6(9):745-756. PubMed ID: 32680649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D in vitro corneal models: A review of current technologies.
    Shiju TM; Carlos de Oliveira R; Wilson SE
    Exp Eye Res; 2020 Nov; 200():108213. PubMed ID: 32890484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.