BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33800447)

  • 1. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy.
    Wang S
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33800447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of DNA Biosensors Based on DNAzymes and Nucleases.
    Yang H; Peng Y; Xu M; Xu S; Zhou Y
    Crit Rev Anal Chem; 2023; 53(1):161-176. PubMed ID: 34225516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives.
    Cheng Z; Wei J; Gu L; Zou L; Wang T; Chen L; Li Y; Yang Y; Li P
    J Hazard Mater; 2022 Jun; 431():128606. PubMed ID: 35278952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes.
    Zhang Q; Cai Y; Li H; Kong DM; Shen HX
    Biosens Bioelectron; 2012; 38(1):331-6. PubMed ID: 22784499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-noise ratiometric fluorescence biosensor for detection of Pb
    Jin H; Liu R; Bai T; Wei M; He B; Suo Z
    Anal Bioanal Chem; 2022 Feb; 414(5):1899-1907. PubMed ID: 34993597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification.
    Yuan Y; Gao M; Liu G; Chai Y; Wei S; Yuan R
    Anal Chim Acta; 2014 Feb; 811():23-8. PubMed ID: 24456590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocatalytic DNA circuit for Hg
    Zhou D; Zeng L; Pan J; Li Q; Chen J
    Talanta; 2020 Jan; 207():120258. PubMed ID: 31594619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical impedance biosensor array based on DNAzyme-functionalized single-walled carbon nanotubes using Gaussian process regression for Cu(II) and Hg(II) determination.
    Wang H; Liu Y; Wang J; Xiong B; Hou X
    Mikrochim Acta; 2020 Mar; 187(4):207. PubMed ID: 32152719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A catalytic cleavage strategy for fluorometric determination of Hg(II) based on the use of a Mg(II)-dependent split DNAzyme and hairpins conjugated to gold nanoparticles.
    Yun W; Li F; Liu X; Li N; Chen L; Yang L
    Mikrochim Acta; 2018 Sep; 185(10):457. PubMed ID: 30218159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallo-Toehold-Activated Catalytic Hairpin Assembly Formation of Three-Way DNAzyme Junctions for Amplified Fluorescent Detection of Hg
    Li X; Xie J; Jiang B; Yuan R; Xiang Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5733-5738. PubMed ID: 28117978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double signal amplification strategy for sensitive detection of Hg
    Peng Y; Xu M; Yang H; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120957. PubMed ID: 35121471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions.
    Lake RJ; Yang Z; Zhang J; Lu Y
    Acc Chem Res; 2019 Dec; 52(12):3275-3286. PubMed ID: 31721559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified fluorescence detection of mercury(II) ions (Hg2+) using target-induced DNAzyme cascade with catalytic and molecular beacons.
    Qi L; Zhao Y; Yuan H; Bai K; Zhao Y; Chen F; Dong Y; Wu Y
    Analyst; 2012 Jun; 137(12):2799-805. PubMed ID: 22551984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive impedimetric biosensor for Hg
    Xie S; Tang Y; Tang D; Cai Y
    Anal Chim Acta; 2018 Sep; 1023():22-28. PubMed ID: 29754603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Biosensor for Detection of Mercury(II) Ions Based on DNA-Cu Nanoclusters and Exonuclease III-assisted Signal Amplification.
    Zhang H; Guan Y; Li X; Lian L; Wang X; Gao W; Zhu B; Liu X; Lou D
    Anal Sci; 2018; 34(10):1155-1161. PubMed ID: 30305592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes.
    Liu M; Chang D; Li Y
    Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free colorimetric detection of Hg²⁺ based on Hg²⁺-triggered exonuclease III-assisted target recycling and DNAzyme amplification.
    Ren W; Zhang Y; Huang WT; Li NB; Luo HQ
    Biosens Bioelectron; 2015 Jun; 68():266-271. PubMed ID: 25590972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.
    Jiang X; Wang H; Wang H; Yuan R; Chai Y
    Anal Chem; 2016 Sep; 88(18):9243-50. PubMed ID: 27529728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Catalytic Activity of Fluorophore-Labeled Y-Shaped DNAzyme/3D MOF-MoS
    Pavadai R; Amalraj A; Subramanian S; Perumal P
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31710-31724. PubMed ID: 34213303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programming a Target-Initiated Bifunctional DNAzyme Nanodevice for Sensitive Ratiometric Electrochemical Biosensing.
    Li Y; Chang Y; Ma J; Wu Z; Yuan R; Chai Y
    Anal Chem; 2019 May; 91(9):6127-6133. PubMed ID: 30933497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.