BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33800557)

  • 1. Preparation and Characterization of Graphene from Refined Benzene Extracted from Low-Rank Coal: Based on the CVD Technology.
    Wu D; Wang M; Zeng J; Yao J; Jia C; Zhang H; Li J
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33800557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Coal-Based Graphene by Flash Joule Heating.
    Liu X; Luo H
    ACS Omega; 2024 Jan; 9(2):2657-2663. PubMed ID: 38250417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistep Fractionation of Coal and Application for Graphene Synthesis.
    Rane K; Adams JJ; Thode JM; Leonard BM; Huo J; Goual L
    ACS Omega; 2021 Jun; 6(25):16573-16583. PubMed ID: 34235329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and large scale synthesis of graphene from coal and its film electrical properties studies.
    Wu Y; Ma Y; Wang Y; Huang L; Li N; Zhang T; Zhang Y; Wan X; Huang Y; Chen Y
    J Nanosci Nanotechnol; 2013 Feb; 13(2):929-32. PubMed ID: 23646544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].
    Zhou J; Yang Z; Liu XF; Wu L; Tian YH; Zhao XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):459-65. PubMed ID: 27209750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.
    Kang C; Jung DH; Lee JS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9098-103. PubMed ID: 26726650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals.
    Dong Y; Lin J; Chen Y; Fu F; Chi Y; Chen G
    Nanoscale; 2014 Jul; 6(13):7410-5. PubMed ID: 24875280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.
    Seo HK; Kim TS; Park C; Xu W; Baek K; Bae SH; Ahn JH; Kim K; Choi HC; Lee TW
    Sci Rep; 2015 Nov; 5():16710. PubMed ID: 26567845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.
    Wang H; Yu G
    Adv Mater; 2016 Jul; 28(25):4956-75. PubMed ID: 27122247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Mass Production of CVD Graphene Films.
    Deng B; Liu Z; Peng H
    Adv Mater; 2019 Mar; 31(9):e1800996. PubMed ID: 30277604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.
    Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH
    Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-Containing Carbon Feedstock for Growing Superclean Graphene.
    Jia K; Zhang J; Lin L; Li Z; Gao J; Sun L; Xue R; Li J; Kang N; Luo Z; Rummeli MH; Peng H; Liu Z
    J Am Chem Soc; 2019 May; 141(19):7670-7674. PubMed ID: 31058498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources.
    Li Z; Wu P; Wang C; Fan X; Zhang W; Zhai X; Zeng C; Li Z; Yang J; Hou J
    ACS Nano; 2011 Apr; 5(4):3385-90. PubMed ID: 21438574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of graphene by chemical vapor deposition: effect of growth conditions.
    Su D; Ren M; Li X; Huang W
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6471-84. PubMed ID: 24245104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene.
    Lin L; Deng B; Sun J; Peng H; Liu Z
    Chem Rev; 2018 Sep; 118(18):9281-9343. PubMed ID: 30207458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superclean Growth of Graphene Using a Cold-Wall Chemical Vapor Deposition Approach.
    Jia K; Ci H; Zhang J; Sun Z; Ma Z; Zhu Y; Liu S; Liu J; Sun L; Liu X; Sun J; Yin W; Peng H; Lin L; Liu Z
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17214-17218. PubMed ID: 32542959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel.
    Kang W; Cui Y; Qin L; Yang Y; Zhao Z; Wang X; Liu X
    J Hazard Mater; 2020 Jun; 392():122499. PubMed ID: 32208315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coal as an abundant source of graphene quantum dots.
    Ye R; Xiang C; Lin J; Peng Z; Huang K; Yan Z; Cook NP; Samuel EL; Hwang CC; Ruan G; Ceriotti G; Raji AR; Martí AA; Tour JM
    Nat Commun; 2013; 4():2943. PubMed ID: 24309588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.