These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33800604)
1. Practical Considerations of Wastewater-Seawater Integrated Reverse Osmosis: Design Constraint by Boron Removal. Lee C; Kang Y; Kim DH; Kim IS Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33800604 [TBL] [Abstract][Full Text] [Related]
2. Flow-through electrochemically assisted reverse-osmosis: A new process towards low-chemical desalination. Long W; Koo JW; Yuan Z; She Q Water Res; 2024 Feb; 249():120982. PubMed ID: 38101048 [TBL] [Abstract][Full Text] [Related]
3. Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water. Bunani S; Yörükoğlu E; Sert G; Kabay N; Yüksel Ü; Yüksel M; Egemen Ö; Pek TÖ Environ Sci Pollut Res Int; 2018 Feb; 25(4):3030-3037. PubMed ID: 25689918 [TBL] [Abstract][Full Text] [Related]
4. Opportunities of Reducing the Energy Consumption of Seawater Reverse Osmosis Desalination by Exploiting Salinity Gradients. Aumesquet-Carreto MÁ; Ortega-Delgado B; García-Rodríguez L Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363601 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination. Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548 [TBL] [Abstract][Full Text] [Related]
6. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. Talaeipour M; Nouri J; Hassani AH; Mahvi AH J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617 [TBL] [Abstract][Full Text] [Related]
7. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling. Park PK; Lee S; Cho JS; Kim JH Water Res; 2012 Aug; 46(12):3796-804. PubMed ID: 22578430 [TBL] [Abstract][Full Text] [Related]
8. Reducing the specific energy consumption of 1st-pass SWRO by application of high-flux membranes fed with high-pH, decarbonated seawater. Ophek L; Birnhack L; Nir O; Binshtein E; Lahav O Water Res; 2015 Nov; 85():185-92. PubMed ID: 26318651 [TBL] [Abstract][Full Text] [Related]
9. High performance RO membranes for desalination and wastewater reclamation and their operation results. Henmi M; Fusaoka Y; Tomioka H; Kurihara M Water Sci Technol; 2010; 62(9):2134-40. PubMed ID: 21045342 [TBL] [Abstract][Full Text] [Related]
10. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Khan MT; Busch M; Molina VG; Emwas AH; Aubry C; Croue JP Water Res; 2014 Aug; 59():271-82. PubMed ID: 24810743 [TBL] [Abstract][Full Text] [Related]
11. A modeling framework to evaluate blending of seawater and treated wastewater streams for synergistic desalination and potable reuse. Wei X; Binger ZM; Achilli A; Sanders KT; Childress AE Water Res; 2020 Mar; 170():115282. PubMed ID: 31739242 [TBL] [Abstract][Full Text] [Related]
12. Isotope and ion selectivity in reverse osmosis desalination: geochemical tracers for man-made freshwater. Kloppmann W; Vengosh A; Guerrot C; Millot R; Pankratov I Environ Sci Technol; 2008 Jul; 42(13):4723-31. PubMed ID: 18677997 [TBL] [Abstract][Full Text] [Related]
13. Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality. Pearson JL; Michael PR; Ghaffour N; Missimer TM Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436379 [TBL] [Abstract][Full Text] [Related]
14. Optimizing energy efficiency in brackish water reverse osmosis (BWRO): A comprehensive study on prioritizing critical operating parameters for specific energy consumption minimization. Abkar L; Aghili Mehrizi A; Jafari M; Beck SE; Ghassemi A; Van Loosdrecht MCM Sci Total Environ; 2024 Jul; 932():172772. PubMed ID: 38688362 [TBL] [Abstract][Full Text] [Related]
15. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. Jarma YA; Karaoğlu A; Tekin Ö; Baba A; Ökten HE; Tomaszewska B; Bostancı K; Arda M; Kabay N J Hazard Mater; 2021 Mar; 405():124129. PubMed ID: 33082019 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Feinberg BJ; Ramon GZ; Hoek EM Environ Sci Technol; 2013 Mar; 47(6):2982-9. PubMed ID: 23331042 [TBL] [Abstract][Full Text] [Related]
17. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
18. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Hancock NT; Black ND; Cath TY Water Res; 2012 Mar; 46(4):1145-54. PubMed ID: 22209275 [TBL] [Abstract][Full Text] [Related]
19. Reverse osmosis desalination: water sources, technology, and today's challenges. Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922 [TBL] [Abstract][Full Text] [Related]
20. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. Chen X; Yip NY Environ Sci Technol; 2018 Feb; 52(4):2242-2250. PubMed ID: 29357240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]