These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33800629)

  • 1. The Influence of Crystal Orientation on Subsurface Damage of Mono-Crystalline Silicon by Bound-Abrasive Grinding.
    Yang W; Li Y
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33800629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Subsurface Microcrack Damage Depth Based on Surface Roughness in Diamond Wire Sawing of Monocrystalline Silicon.
    Wang K; Gao Y; Yang C
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a trend prediction model of subsurface damage for fixed-abrasive grinding of optics by cup wheels.
    Dong Z; Cheng H
    Appl Opt; 2016 Nov; 55(32):9305-9313. PubMed ID: 27857326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of grinding parameters on surface roughness and subsurface damage and their evaluation in fused silica.
    Xiao H; Chen Z; Wang H; Wang J; Zhu N
    Opt Express; 2018 Feb; 26(4):4638-4655. PubMed ID: 29475312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsurface damage of fused silica lapped by fixed-abrasive diamond pellets.
    Dong Z; Cheng H; Ye X; Tam HY
    Appl Opt; 2014 Sep; 53(26):5841-9. PubMed ID: 25321661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model and digital extraction of subsurface damage in ground fused silica.
    Xiao H; Yin S; Wu H; Wang H; Liang R
    Opt Express; 2022 May; 30(11):17999-18017. PubMed ID: 36221609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relations between subsurface damage depth and surface roughness of grinded fused silica.
    Blaineau P; Laheurte R; Darnis P; Darbois N; Cahuc O; Neauport J
    Opt Express; 2013 Dec; 21(25):30433-43. PubMed ID: 24514620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Rate Effect on the Ductile Brittle Transition in Grinding Hot Pressed SiC Ceramics.
    Huang P; Zhang J
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material Removal Mechanism of SiC Ceramic by Porous Diamond Grinding Wheel Using Discrete Element Simulation.
    Zhang Z; Xu J; Zhu Y; Zhang Z; Zeng W
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machinability of enamel under grinding process using diamond dental burrs.
    Li QZ; Wang CY; Zheng LJ; Zhao DN; Zeng CF
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1151-1164. PubMed ID: 31532324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsurface Damage in Polishing Process of Silicon Carbide Ceramic.
    Gu Y; Zhu W; Lin J; Lu M; Kang M
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29584694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and Precise Grinding of Sapphire Glass Based on Dry Electrical Discharge Dressed Coarse Diamond Grinding Wheel.
    Lu Y; Luo W; Wu X; Zhou C; Xu B; Zhao H; Li L
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31546823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.
    Mohammadibassir M; Rezvani MB; Golzari H; Moravej Salehi E; Fahimi MA; Kharazi Fard MJ
    J Prosthodont; 2019 Jan; 28(1):e172-e180. PubMed ID: 28273681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structuring of Bioceramics by Micro-Grinding for Dental Implant Applications.
    Fook P; Berger D; Riemer O; Karpuschewski B
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31075891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grinding of silicon carbide for optical surface fabrication. Part II. Subsurface damage.
    Shanmugam P; Lambropoulos JC; Davies MA
    Appl Opt; 2023 May; 62(14):3788-3796. PubMed ID: 37706997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a defined grain distribution brazed diamond grinding wheel for ultrasonic assisted grinding and experimental verification.
    Ding K; Li Q; Lei W; Zhang C; Xu M; Wang X
    Ultrasonics; 2022 Jan; 118():106577. PubMed ID: 34536855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsurface damage in some single crystalline optical materials.
    Randi JA; Lambropoulos JC; Jacobs SD
    Appl Opt; 2005 Apr; 44(12):2241-9. PubMed ID: 15861828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Application of Grinding Wheels with Soft and Hard Composite Structures for Silicon Carbide Substrate Precision Processing.
    Luo Q; Chen J; Lu J; Ke C; Hu G; Huang H
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Grinding Parameters on the Processing Temperature, Crack Propagation and Residual Stress in Silicon Nitride Ceramics.
    Yan H; Deng F; Qin Z; Zhu J; Chang H; Niu H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroplating a miniature diamond wheel for grinding of the calcified plaque inside arteries.
    Lyu JJ; Liu Y; Gurm HS; Shih A; Zheng Y
    Med Eng Phys; 2023 Mar; 113():103969. PubMed ID: 36966003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.