BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33800810)

  • 1. Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process.
    Saffari M; Khodayar M; Ebrahimi Saadabadi MS; Sequeira AF; Cardoso JS
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward propagation dropout in deep neural networks using Jensen-Shannon and random forest feature importance ranking.
    Heidari M; Moattar MH; Ghaffari H
    Neural Netw; 2023 Aug; 165():238-247. PubMed ID: 37307667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application.
    Bacanin N; Zivkovic M; Al-Turjman F; Venkatachalam K; Trojovský P; Strumberger I; Bezdan T
    Sci Rep; 2022 Apr; 12(1):6302. PubMed ID: 35440609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regularization of deep neural networks with spectral dropout.
    Khan SH; Hayat M; Porikli F
    Neural Netw; 2019 Feb; 110():82-90. PubMed ID: 30504041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Dropout: A Model-Free Methodology for Bayesian Dropout Optimization.
    Xie J; Ma Z; Lei J; Zhang G; Xue JH; Tan ZH; Guo J
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4605-4625. PubMed ID: 34029187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of adaptive SVD regularization for deep neural networks.
    Bejani MM; Ghatee M
    Neural Netw; 2020 Aug; 128():33-46. PubMed ID: 32413786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shakeout: A New Approach to Regularized Deep Neural Network Training.
    Kang G; Li J; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2018 May; 40(5):1245-1258. PubMed ID: 28489533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Dropout Method Based on Biological Principles.
    Li H; Weng J; Mao Y; Wang Y; Zhan Y; Cai Q; Gu W
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4267-4276. PubMed ID: 33872159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Kernel Machines Using Deep Learning.
    Song H; J Thiagarajan J; Sattigeri P; Spanias A
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5528-5540. PubMed ID: 29993616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks.
    Zang K; Wu W; Luo W
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressing Features for Learning With Noisy Labels.
    Chen Y; Hu SX; Shen X; Ai C; Suykens JAK
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):2124-2138. PubMed ID: 35802546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards dropout training for convolutional neural networks.
    Wu H; Gu X
    Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
    Poernomo A; Kang DK
    Neural Netw; 2018 Aug; 104():60-67. PubMed ID: 29715684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks.
    Avgerinos C; Vretos N; Daras P
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction.
    Ayinde BO; Inanc T; Zurada JM
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2650-2661. PubMed ID: 30624232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts.
    Ahmed R; Gogate M; Tahir A; Dashtipour K; Al-Tamimi B; Hawalah A; El-Affendi MA; Hussain A
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33805765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adversarially robust neural networks with feature uncertainty learning and label embedding.
    Wang R; Ke H; Hu M; Wu W
    Neural Netw; 2024 Apr; 172():106087. PubMed ID: 38160621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.