BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33800834)

  • 1. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.
    Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers.
    Zhang S; Li W; Elsayed M; Tian P; Clark AW; Wheeler AR; Neale SL
    Opt Lett; 2019 Sep; 44(17):4171-4174. PubMed ID: 31465355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.
    Hwang H; Choi YJ; Choi W; Kim SH; Jang J; Park JK
    Electrophoresis; 2008 Mar; 29(6):1203-12. PubMed ID: 18297658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow.
    Lv C; Varanakkottu SN; Baier T; Hardt S
    Nano Lett; 2018 Nov; 18(11):6924-6930. PubMed ID: 30285458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers.
    Kumar S; Gunaseelan M; Vaippully R; Kumar A; Ajith M; Vaidya G; Dutta S; Roy B
    Biomed Opt Express; 2020 Jul; 11(7):3555-3566. PubMed ID: 33014551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-Dumbbells-A Versatile Tool for Optical Tweezers.
    Lamperska W; Drobczyński S; Nawrot M; Wasylczyk P; Masajada J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.
    Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD
    Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escape from an Optoelectronic Tweezer Trap: experimental results and simulations.
    Zhang S; Nikitina A; Chen Y; Zhang Y; Liu L; Flood AG; Juvert J; Chamberlain MD; Kherani NP; Neale SL; Wheeler AR
    Opt Express; 2018 Mar; 26(5):5300-5309. PubMed ID: 29529735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On chip shapeable optical tweezers.
    Renaut C; Cluzel B; Dellinger J; Lalouat L; Picard E; Peyrade D; Hadji E; de Fornel F
    Sci Rep; 2013; 3():2290. PubMed ID: 23887310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin film Gallium nitride (GaN) based acoustofluidic Tweezer: Modelling and microparticle manipulation.
    Sun C; Wu F; Fu Y; Wallis DJ; Mikhaylov R; Yuan F; Liang D; Xie Z; Wang H; Tao R; Shen MH; Yang J; Xun W; Wu Z; Yang Z; Cang H; Yang X
    Ultrasonics; 2020 Dec; 108():106202. PubMed ID: 32535411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.
    Huang KW; Su TW; Ozcan A; Chiou PY
    Lab Chip; 2013 Jun; 13(12):2278-84. PubMed ID: 23661233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.
    Yang SM; Yu TM; Huang HP; Ku MY; Hsu L; Liu CH
    Opt Lett; 2010 Jun; 35(12):1959-61. PubMed ID: 20548352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media.
    Yang Y; Mao Y; Shin KS; Chui CO; Chiou PY
    Sci Rep; 2016 Mar; 6():22630. PubMed ID: 26940301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Optothermal Manipulations along Various Surfaces.
    Ding H; Kollipara PS; Yao K; Chang Y; Dickinson DJ; Zheng Y
    ACS Nano; 2023 May; 17(10):9280-9289. PubMed ID: 37017427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
    Melzer JE; McLeod E
    ACS Nano; 2018 Mar; 12(3):2440-2447. PubMed ID: 29400940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microparticle electrical conductivity measurement using optoelectronic tweezers.
    Ren W; Zaman MA; Wu M; Jensen MA; Davis RW; Hesselink L
    J Appl Phys; 2023 Sep; 134(11):113104. PubMed ID: 37736285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.