These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33800877)

  • 21. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Machine Learning Algorithms to Predict Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma.
    Zhu J; Zheng J; Li L; Huang R; Ren H; Wang D; Dai Z; Su X
    Front Med (Lausanne); 2021; 8():635771. PubMed ID: 33768105
    [No Abstract]   [Full Text] [Related]  

  • 23. An interpretable boosting model to predict side effects of analgesics for osteoarthritis.
    Liu L; Yu Y; Fei Z; Li M; Wu FX; Li HD; Pan Y; Wang J
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):105. PubMed ID: 30463545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models.
    Bhagat SK; Tiyasha T; Awadh SM; Tung TM; Jawad AH; Yaseen ZM
    Environ Pollut; 2021 Jan; 268(Pt B):115663. PubMed ID: 33120144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. XGBoost: An Optimal Machine Learning Model with Just Structural Features to Discover MOF Adsorbents of Xe/Kr.
    Liang H; Jiang K; Yan TA; Chen GH
    ACS Omega; 2021 Apr; 6(13):9066-9076. PubMed ID: 33842776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manganese (Mn) removal prediction using extreme gradient model.
    Bhagat SK; Tiyasha T; Tung TM; Mostafa RR; Yaseen ZM
    Ecotoxicol Environ Saf; 2020 Nov; 204():111059. PubMed ID: 32791357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme.
    Shimoda A; Ichikawa D; Oyama H
    Comput Methods Programs Biomed; 2018 Sep; 163():39-46. PubMed ID: 30119856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting urinary tract infections in the emergency department with machine learning.
    Taylor RA; Moore CL; Cheung KH; Brandt C
    PLoS One; 2018; 13(3):e0194085. PubMed ID: 29513742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Breast Cancer in Chinese Women Using Machine Learning Techniques: Algorithm Development.
    Hou C; Zhong X; He P; Xu B; Diao S; Yi F; Zheng H; Li J
    JMIR Med Inform; 2020 Jun; 8(6):e17364. PubMed ID: 32510459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Machine Learning Algorithms to Predict Hepatitis B Surface Antigen Seroclearance.
    Tian X; Chong Y; Huang Y; Guo P; Li M; Zhang W; Du Z; Li X; Hao Y
    Comput Math Methods Med; 2019; 2019():6915850. PubMed ID: 31281411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites.
    Wang P; Zhang G; Yu ZG; Huang G
    Front Genet; 2021; 12():752732. PubMed ID: 34764983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke.
    Xu Y; Yang X; Huang H; Peng C; Ge Y; Wu H; Wang J; Xiong G; Yi Y
    J Stroke Cerebrovasc Dis; 2019 Dec; 28(12):104441. PubMed ID: 31627995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Left Ventricular Mechanics Using Machine Learning.
    Dabiri Y; Van der Velden A; Sack KL; Choy JS; Kassab GS; Guccione JM
    Front Phys; 2019 Sep; 7():. PubMed ID: 31903394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure.
    Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y
    BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia.
    Bhagat SK; Tung TM; Yaseen ZM
    J Hazard Mater; 2021 Feb; 403():123492. PubMed ID: 32763636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid decision tree-based machine learning models for short-term water quality prediction.
    Lu H; Ma X
    Chemosphere; 2020 Jun; 249():126169. PubMed ID: 32078849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.