These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33801312)

  • 1. Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields.
    Deng H; Zhou J; Zhang Y
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell.
    Deng Z; Li B; Xing S; Zhao C; Wang H
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.
    Chang H; Kao MJ; Chen CH; Kuo CG; Lee KY
    J Nanosci Nanotechnol; 2014 Oct; 14(10):8066-9. PubMed ID: 25942924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Anode Flow Field Design on CO(2) Bubble Behavior in μDMFC.
    Li M; Liang J; Liu C; Sun G; Zhao G
    Sensors (Basel); 2009; 9(5):3314-24. PubMed ID: 22412313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells.
    Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K
    Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations.
    Gago AS; Esquivel JP; Sabaté N; Santander J; Alonso-Vante N
    Beilstein J Nanotechnol; 2015; 6():2000-6. PubMed ID: 26665070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Graphene Oxide/Carbon Paper for the Anode Diffusion Layer of a Micro Direct Methanol Fuel Cell.
    Zhang D; Li K; Wang Z; Zhao Z
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.
    Lee PH; Han SS; Hwang SS
    Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fabrication of Flow Field Plates for Direct Methanol Fuel Cell Using Lithography and Radio Frequency Sputtering.
    Chang H; Kao MJ; Chen CH; Cho KC; Hsu CY; Chen ZL
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6172-5. PubMed ID: 26369220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.
    Lee PH; Hwang SS
    Sensors (Basel); 2009; 9(11):9104-21. PubMed ID: 22291556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Methanol Electro-Oxidation Using PtCo/Reduced Graphene Oxide (rGO) Anode Nanocatalysts in Direct Methanol Fuel Cell.
    Baronia R; Goel J; Singhal SK
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4315-4322. PubMed ID: 30765012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of the Effect of Liquid Water during Switching Mode for Unitised Regenerative Proton Exchange Membrane Fuel Cell.
    Low HC; Lim BH
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell.
    Zhao Y; Hu C; Xu C; Cho HM; Chen D
    ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation investigations into the influence of the mass ratio of pulverized-coal in fuel-rich flow to that in fuel-lean flow on the combustion and NO
    Li X; Zeng L; Liu H; Song M; Liu W; Han H; Zhang S; Chen Z; Li Z
    Environ Sci Pollut Res Int; 2020 May; 27(14):16900-16915. PubMed ID: 32144700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Start-Up Microfluidic Microbial Fuel Cells With Serpentine Microchannel.
    Luo X; Xie W; Wang R; Wu X; Yu L; Qiao Y
    Front Microbiol; 2018; 9():2816. PubMed ID: 30515148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules.
    Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro Direct Methanol Fuel Cell Based on Reduced Graphene Oxide Composite Electrode.
    Liu C; Hu S; Yin L; Yang W; Yu J; Xu Y; Li L; Wang G; Wang L
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33440803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design.
    Tominaka S; Ohta S; Obata H; Momma T; Osaka T
    J Am Chem Soc; 2008 Aug; 130(32):10456-7. PubMed ID: 18642915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal Characterization-Based Prognostics for Micro-Direct-Methanol Fuel Cells under Dynamic Operating Conditions.
    Zhang D; Li X; Wang W; Zhao Z
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exploration of the solution of direct methanol fuel cell cost effectiveness.
    Wang T; Luo Z; Wang C; Li Y; Chen X; Tang Y; Wang X; Zhou Z
    Front Chem; 2024; 12():1434996. PubMed ID: 39176075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.