These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 33801363)

  • 1. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives.
    Tiodar ED; Văcar CL; Podar D
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33801363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on phytoremediation of mercury contaminated soils.
    Liu Z; Chen B; Wang LA; Urbanovich O; Nagorskaya L; Li X; Tang L
    J Hazard Mater; 2020 Dec; 400():123138. PubMed ID: 32947735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions.
    Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB
    Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils.
    Ullah S; Liu Q; Wang S; Jan AU; Sharif HMA; Ditta A; Wang G; Cheng H
    Sci Total Environ; 2023 Nov; 899():165726. PubMed ID: 37495153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands.
    Chengatt AP; Sarath NG; Sebastian DP; Mohanan NS; Sindhu ES; George S; Puthur JT
    Int J Phytoremediation; 2023; 25(8):981-996. PubMed ID: 36148488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in phyto-combined remediation of heavy metal pollution in soil.
    Deng S; Zhang X; Zhu Y; Zhuo R
    Biotechnol Adv; 2024; 72():108337. PubMed ID: 38460740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation.
    Chamba I; Rosado D; Kalinhoff C; Thangaswamy S; Sánchez-Rodríguez A; Gazquez MJ
    Chemosphere; 2017 Dec; 188():633-641. PubMed ID: 28918247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review.
    Ashraf MA; Hussain I; Rasheed R; Iqbal M; Riaz M; Arif MS
    J Environ Manage; 2017 Aug; 198(Pt 1):132-143. PubMed ID: 28456029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites.
    Burges A; Alkorta I; Epelde L; Garbisu C
    Int J Phytoremediation; 2018 Mar; 20(4):384-397. PubMed ID: 28862473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.
    Marrugo-Negrete J; Marrugo-Madrid S; Pinedo-Hernández J; Durango-Hernández J; Díez S
    Sci Total Environ; 2016 Jan; 542(Pt A):809-16. PubMed ID: 26556744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils.
    Liu S; Yang B; Liang Y; Xiao Y; Fang J
    Environ Sci Pollut Res Int; 2020 May; 27(14):16069-16085. PubMed ID: 32173779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.