BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33801596)

  • 1. At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture.
    Alpsoy A; Sood S; Dykhuizen EC
    Biology (Basel); 2021 Mar; 10(4):. PubMed ID: 33801596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF.
    Valletta M; Russo R; Baglivo I; Russo V; Ragucci S; Sandomenico A; Iaccarino E; Ruvo M; De Feis I; Angelini C; Iachettini S; Biroccio A; Pedone PV; Chambery A
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CTCF and Its Partners: Shaper of 3D Genome during Development.
    Sun X; Zhang J; Cao C
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors.
    Paul S; Bartholomew B
    Biochem Soc Trans; 2018 Dec; 46(6):1423-1430. PubMed ID: 30467122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long non-coding RNAs: the tentacles of chromatin remodeler complexes.
    Neve B; Jonckheere N; Vincent A; Van Seuningen I
    Cell Mol Life Sci; 2021 Feb; 78(4):1139-1161. PubMed ID: 33001247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin remodelers: We are the drivers!!
    Tyagi M; Imam N; Verma K; Patel AK
    Nucleus; 2016 Jul; 7(4):388-404. PubMed ID: 27429206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms of action of chromatin remodelers and implications in development and disease.
    Sahu RK; Singh S; Tomar RS
    Biochem Pharmacol; 2020 Oct; 180():114200. PubMed ID: 32805211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-Dependent Chromatin Remodeling.
    Yodh J
    Adv Exp Med Biol; 2013; 767():263-95. PubMed ID: 23161016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective.
    Ojolo SP; Cao S; Priyadarshani SVGN; Li W; Yan M; Aslam M; Zhao H; Qin Y
    Front Plant Sci; 2018; 9():1232. PubMed ID: 30186301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression.
    Kang JY; Song SH; Yun J; Jeon MS; Kim HP; Han SW; Kim TY
    Oncogene; 2015 Nov; 34(45):5677-84. PubMed ID: 25703332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment.
    Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE
    Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
    Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions.
    Wang W
    Curr Top Microbiol Immunol; 2003; 274():143-69. PubMed ID: 12596907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin Remodelers in the 3D Nuclear Compartment.
    MagaƱa-Acosta M; Valadez-Graham V
    Front Genet; 2020; 11():600615. PubMed ID: 33329746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
    Tang Z; Luo OJ; Li X; Zheng M; Zhu JJ; Szalaj P; Trzaskoma P; Magalska A; Wlodarczyk J; Ruszczycki B; Michalski P; Piecuch E; Wang P; Wang D; Tian SZ; Penrad-Mobayed M; Sachs LM; Ruan X; Wei CL; Liu ET; Wilczynski GM; Plewczynski D; Li G; Ruan Y
    Cell; 2015 Dec; 163(7):1611-27. PubMed ID: 26686651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Chromatin Architecture in Plant Stress Responses: An Update.
    Bhadouriya SL; Mehrotra S; Basantani MK; Loake GJ; Mehrotra R
    Front Plant Sci; 2020; 11():603380. PubMed ID: 33510748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic link between gene regulation and genome architecture in mammalian development.
    Bonora G; Plath K; Denholtz M
    Curr Opin Genet Dev; 2014 Aug; 27():92-101. PubMed ID: 24998386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.