These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 33801695)
21. Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS Zhang M; Han N; Zhang J; Wang J; Chen X; Zhao J; Gan X Sci Adv; 2023 Mar; 9(11):eadf4571. PubMed ID: 36921058 [TBL] [Abstract][Full Text] [Related]
22. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945 [TBL] [Abstract][Full Text] [Related]
23. Gapless van der Waals Heterostructures for Infrared Optoelectronic Devices. Wen Y; He P; Wang Q; Yao Y; Zhang Y; Hussain S; Wang Z; Cheng R; Yin L; Getaye Sendeku M; Wang F; Jiang C; He J ACS Nano; 2019 Dec; 13(12):14519-14528. PubMed ID: 31794184 [TBL] [Abstract][Full Text] [Related]
24. Determination of optimum optoelectronic properties in vertically stacked MoS Tan S; Zhao Y; Dong J; Yang G; Ouyang G Phys Chem Chem Phys; 2019 Oct; 21(41):23179-23186. PubMed ID: 31612172 [TBL] [Abstract][Full Text] [Related]
25. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. Zhang K; Zhang T; Cheng G; Li T; Wang S; Wei W; Zhou X; Yu W; Sun Y; Wang P; Zhang D; Zeng C; Wang X; Hu W; Fan HJ; Shen G; Chen X; Duan X; Chang K; Dai N ACS Nano; 2016 Mar; 10(3):3852-8. PubMed ID: 26950255 [TBL] [Abstract][Full Text] [Related]
26. Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure. Ding YM; Shi JJ; Xia C; Zhang M; Du J; Huang P; Wu M; Wang H; Cen YL; Pan SH Nanoscale; 2017 Oct; 9(38):14682-14689. PubMed ID: 28944803 [TBL] [Abstract][Full Text] [Related]
27. Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS Burdanova MG; Kashtiban RJ; Zheng Y; Xiang R; Chiashi S; Woolley JM; Staniforth M; Sakamoto-Rablah E; Xie X; Broome M; Sloan J; Anisimov A; Kauppinen EI; Maruyama S; Lloyd-Hughes J Nano Lett; 2020 May; 20(5):3560-3567. PubMed ID: 32324411 [TBL] [Abstract][Full Text] [Related]
28. Band structure engineering in a MoS Ma Y; Zhao X; Wang T; Li W; Wang X; Chang S; Li Y; Zhao M; Dai X Phys Chem Chem Phys; 2016 Oct; 18(41):28466-28473. PubMed ID: 27722569 [TBL] [Abstract][Full Text] [Related]
29. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure. Huang L; Li Y; Wei Z; Li J Sci Rep; 2015 Nov; 5():16448. PubMed ID: 26553370 [TBL] [Abstract][Full Text] [Related]
30. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. Lu N; Guo H; Wang L; Wu X; Zeng XC Nanoscale; 2014 May; 6(9):4566-71. PubMed ID: 24676364 [TBL] [Abstract][Full Text] [Related]
31. Tailoring the structural and electronic properties of an SnSe Vu TV; Hieu NV; Thao LTP; Hieu NN; Phuc HV; Bui HD; Idrees M; Amin B; Duc LM; Nguyen CV Phys Chem Chem Phys; 2019 Oct; 21(39):22140-22148. PubMed ID: 31573019 [TBL] [Abstract][Full Text] [Related]
32. Adjustable electronic and optical properties of BlueP/MoS Yang F; Han J; Zhang L; Tang X; Zhuo Z; Tao Y; Cao X; Dai Y Nanotechnology; 2020 Sep; 31(37):375706. PubMed ID: 32464615 [TBL] [Abstract][Full Text] [Related]
33. Type-I van der Waals heterostructure formed by MoS Bellus MZ; Li M; Lane SD; Ceballos F; Cui Q; Zeng XC; Zhao H Nanoscale Horiz; 2017 Jan; 2(1):31-36. PubMed ID: 32260674 [TBL] [Abstract][Full Text] [Related]
34. Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Zheng Q; Saidi WA; Xie Y; Lan Z; Prezhdo OV; Petek H; Zhao J Nano Lett; 2017 Oct; 17(10):6435-6442. PubMed ID: 28914539 [TBL] [Abstract][Full Text] [Related]
35. Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged Ions. Schwestka J; Inani H; Tripathi M; Niggas A; McEvoy N; Libisch F; Aumayr F; Kotakoski J; Wilhelm RA ACS Nano; 2020 Aug; 14(8):10536-10543. PubMed ID: 32806047 [TBL] [Abstract][Full Text] [Related]
36. Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers. Yu JH; Lee HR; Hong SS; Kong D; Lee HW; Wang H; Xiong F; Wang S; Cui Y Nano Lett; 2015 Feb; 15(2):1031-5. PubMed ID: 25590995 [TBL] [Abstract][Full Text] [Related]
37. From Two- to Three-Dimensional van der Waals Layered Structures of Boron Crystals: An Ab Initio Study. Li D; Tang Q; He J; Li B; Ding G; Feng C; Zhou H; Zhang G ACS Omega; 2019 May; 4(5):8015-8021. PubMed ID: 31459890 [TBL] [Abstract][Full Text] [Related]
38. Time-Domain Ab Initio Insights into the Reduced Nonradiative Electron-Hole Recombination in ReSe Dou W; Jia Y; Hao X; Meng Q; Wu J; Zhai S; Li T; Hu W; Song B; Zhou M J Phys Chem Lett; 2021 Mar; 12(10):2682-2690. PubMed ID: 33689347 [TBL] [Abstract][Full Text] [Related]
39. First-principles calculations of thermal transport properties in MoS Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395 [TBL] [Abstract][Full Text] [Related]
40. Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. Wang F; Wang Z; Xu K; Wang F; Wang Q; Huang Y; Yin L; He J Nano Lett; 2015 Nov; 15(11):7558-66. PubMed ID: 26469092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]