These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33801922)

  • 1. Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review.
    AlMohammed HI; Khudair Khalaf A; E Albalawi A; Alanazi AD; Baharvand P; Moghaddam A; Mahmoudvand H
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33801922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents.
    Albalawi AE; Alanazi AD; Sharifi I; Ezzatkhah F
    Acta Parasitol; 2021 Sep; 66(3):797-811. PubMed ID: 33770343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chitosan on
    Cheraghipour K; Masoori L; Ezzatkhah F; Salimikia I; Amiri S; Makenali AS; Taherpour F; Mahmoudvand H
    Parasite Epidemiol Control; 2020 Nov; 11():e00189. PubMed ID: 33163635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Potency of Organic and Inorganic Nanoparticles to Treat Cystic Echinococcosis: An Evidence-Based Review.
    Albalawi AE; Alanazi AD; Baharvand P; Sepahvand M; Mahmoudvand H
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33348662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review.
    Moradifar N; Kiani AA; Veiskaramian A; Karami K
    Curr Cardiol Rev; 2022; 18(1):e110621194025. PubMed ID: 35297343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural products derived steroids as potential anti-leishmanial agents; disease prevalence, underlying mechanisms and future perspectives.
    Elawad MA; Elkhalifa MEM; Hamdoon AAE; Salim LHM; Ahmad Z; Ayaz M
    Steroids; 2023 May; 193():109196. PubMed ID: 36764565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Geographical Distribution of Human Cutaneous and Visceral
    Hajjaran H; Saberi R; Borjian A; Fakhar M; Hosseini SA; Ghodrati S; Mohebali M
    Front Public Health; 2021; 9():661674. PubMed ID: 34249836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of antileishmanial activity, mode of action and cellular response induced by vanillin synthetic derivatives against Leishmania species able to cause cutaneous and visceral leishmaniasis.
    Freitas CS; Santiago SS; Lage DP; Antinarelli LMR; Oliveira FM; Vale DL; Martins VT; Magalhaes LND; Bandeira RS; Ramos FF; Pereira IAG; de Jesus MM; Ludolf F; Tavares GSV; Costa AV; Ferreira RS; Coimbra ES; Teixeira RR; Coelho EAF
    Exp Parasitol; 2023 Aug; 251():108555. PubMed ID: 37247802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and in-vitro anti-leishmanial activity of (4-arylpiperazin-1-yl)(1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone derivatives.
    Ashok P; Chander S; Chow LM; Wong IL; Singh RP; Jha PN; Sankaranarayanan M
    Bioorg Chem; 2017 Feb; 70():100-106. PubMed ID: 27939960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of Antileishmanial Compounds Derived from Natural Sources.
    Peer GDG; Priyadarshini A; Gupta A; Vibhuti A; Raj VS; Chang CM; Pandey RP
    Antiinflamm Antiallergy Agents Med Chem; 2024; 23(1):1-13. PubMed ID: 38279725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of anti-leishmanial drugs efficacy against
    Phumee A; Jariyapan N; Chusri S; Hortiwakul T; Mouri O; Gay F; Limpanasithikul W; Siriyasatien P
    Parasite Epidemiol Control; 2020 May; 9():e00143. PubMed ID: 32300665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic review on medicinal plants used for the treatment of
    Alnomasy S; Al-Awsi GRL; Raziani Y; Albalawi AE; Alanazi AD; Niazi M; Mahmoudvand H
    Saudi J Biol Sci; 2021 Sep; 28(9):5391-5402. PubMed ID: 34466120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Designing of a Gel Formulation with Chitosan Polymer Using Liposomes as Nanocarriers of Amphotericin B for a Non-invasive Treatment Model of Cutaneous Leishmaniasis.
    Gürbüz Çolak N; Çetin Uyanikgil EÖ; Özbel Y; Töz S
    Acta Parasitol; 2022 Sep; 67(3):1354-1363. PubMed ID: 35857275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro activity of cinnamaldehyde on Leishmania (Leishmania) amazonensis.
    Ávila Brustolin A; Fernandes Herculano Ramos-Milaré ÁC; Perles de Mello TF; Alessi Aristides SM; Campana Lonardoni MV; Verzignassi Silveira TG
    Exp Parasitol; 2022; 236-237():108244. PubMed ID: 35259404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo Anti-leishmanial Potential of [Ag (PTA) 4 ]BF 4 and [Ag(HBPz 3 )(PPh 3 )] Silver Complexes.
    Soldera PF; Chagas AFDS; Brasil AMV; Comandolli-Wyrepkowski CD; Porchia M; Pereira AMRF
    Rev Soc Bras Med Trop; 2022; 55():e04782021. PubMed ID: 35416873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis Multiplication In Vitro.
    Freitas EO; Nico D; Guan R; Meyer-Fernandes JR; Clinch K; Evans GB; Tyler PC; Schramm VL; Palatnik-de-Sousa CB
    PLoS One; 2015; 10(4):e0124183. PubMed ID: 25909893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgramma vacciniifolia Frond Lectin: In Vitro Anti-leishmanial Activity and Immunomodulatory Effects Against Internalized Amastigote Forms of Leishmania amazonensis.
    de Souza Aguiar LM; de Moraes Alves MM; Sobrinho Júnior EPC; Paiva PMG; de Amorim Carvalho FA; de Albuquerque LP; de Siqueira Patriota LL; Napoleão TH
    Acta Parasitol; 2023 Dec; 68(4):869-879. PubMed ID: 37874484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergism in vitro of lovastatin and miconazole as anti-leishmanial agents.
    Haughan PA; Chance ML; Goad LJ
    Biochem Pharmacol; 1992 Dec; 44(11):2199-206. PubMed ID: 1472085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system.
    Ribeiro TG; Chávez-Fumagalli MA; Valadares DG; França JR; Rodrigues LB; Duarte MC; Lage PS; Andrade PH; Lage DP; Arruda LV; Abánades DR; Costa LE; Martins VT; Tavares CA; Castilho RO; Coelho EA; Faraco AA
    Int J Nanomedicine; 2014; 9():877-90. PubMed ID: 24627630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.