These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33802209)

  • 1. Safety and Transfer Study: Transfer of Bromoform Present in
    Muizelaar W; Groot M; van Duinkerken G; Peters R; Dijkstra J
    Foods; 2021 Mar; 10(3):. PubMed ID: 33802209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows.
    Stefenoni HA; Räisänen SE; Cueva SF; Wasson DE; Lage CFA; Melgar A; Fetter ME; Smith P; Hennessy M; Vecchiarelli B; Bender J; Pitta D; Cantrell CL; Yarish C; Hristov AN
    J Dairy Sci; 2021 Apr; 104(4):4157-4173. PubMed ID: 33516546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive metabolites of Asparagopsis stabilized in canola oil completely suppress methane emissions in beef cattle fed a feedlot diet.
    Cowley FC; Kinley RD; Mackenzie SL; Fortes MRS; Palmieri C; Simanungkalit G; Almeida AK; Roque BM
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38646666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the dietary supplementation with sunflower oil-enriched bromoform from Asparagopsis taxiformis on lambs' growth, health, and ruminal methane production.
    Sena F; Portugal AP; Dentinho MT; Costa J; Francisco A; Moradi S; Paulos K; Soares DM; Henriques D; Oliveira A; Ramos H; Bexiga R; Correia JJ; Alexandre-Pires G; Domingos T; Alves SP; Bessa RJB; Santos-Silva J
    Animal; 2024 Aug; 18(8):101249. PubMed ID: 39096600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rumen microbial degradation of bromoform from red seaweed (Asparagopsis taxiformis) and the impact on rumen fermentation and methanogenic archaea.
    Romero P; Belanche A; Jiménez E; Hueso R; Ramos-Morales E; Salwen JK; Kebreab E; Yáñez-Ruiz DR
    J Anim Sci Biotechnol; 2023 Nov; 14(1):133. PubMed ID: 37907951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of 3 northwest European seaweed species on enteric methane production and lactational performance of Holstein-Friesian dairy cows.
    Muizelaar W; van Duinkerken G; Khan Z; Dijkstra J
    J Dairy Sci; 2023 Jul; 106(7):4622-4633. PubMed ID: 37225576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sunflower oil infusions of Asparagopsis taxiformis on in vitro ruminal methane production and biohydrogenation of polyunsaturated fatty acids.
    Sena F; Portugal PV; Dentinho MT; Paulos K; Costa C; Soares DM; Oliveira A; Ramos H; Alves SP; Santos-Silva J; Bessa RJB
    J Dairy Sci; 2024 Mar; 107(3):1472-1484. PubMed ID: 37944809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet supplementation with canola meal improves milk production, reduces enteric methane emissions, and shifts nitrogen excretion from urine to feces in dairy cows.
    Benchaar C; Hassanat F; Beauchemin KA; Gislon G; Ouellet DR
    J Dairy Sci; 2021 Sep; 104(9):9645-9663. PubMed ID: 34176624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle.
    Hristov AN; Melgar A; Wasson D; Arndt C
    J Dairy Sci; 2022 Oct; 105(10):8543-8557. PubMed ID: 35863922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maine organic dairy producers' receptiveness to seaweed supplementation and effect of
    Reyes DC; Meredith J; Puro L; Berry K; Kersbergen R; Soder KJ; Quigley C; Donihue M; Cox D; Price NN; Brito AF
    Front Vet Sci; 2023; 10():1153097. PubMed ID: 37483286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows.
    Muñoz C; Letelier PA; Ungerfeld EM; Morales JM; Hube S; Pérez-Prieto LA
    J Dairy Sci; 2016 Oct; 99(10):7945-7955. PubMed ID: 27497906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability and ranking of long-term enteric methane emissions measurement on dairy cows across diets and time using GreenFeed system in farm-conditions.
    Coppa M; Jurquet J; Eugène M; Dechaux T; Rochette Y; Lamy JM; Ferlay A; Martin C
    Methods; 2021 Feb; 186():59-67. PubMed ID: 33253811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactational performance, rumen fermentation, and enteric methane emission of dairy cows fed an amylase-enabled corn silage.
    Cueva SF; Stefenoni H; Melgar A; Räisänen SE; Lage CFA; Wasson DE; Fetter ME; Pelaez AM; Roth GW; Hristov AN
    J Dairy Sci; 2021 Sep; 104(9):9827-9841. PubMed ID: 34253370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets.
    van Gastelen S; Antunes-Fernandes EC; Hettinga KA; Klop G; Alferink SJ; Hendriks WH; Dijkstra J
    J Dairy Sci; 2015 Mar; 98(3):1915-27. PubMed ID: 25582590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage.
    Roque BM; Brooke CG; Ladau J; Polley T; Marsh LJ; Najafi N; Pandey P; Singh L; Kinley R; Salwen JK; Eloe-Fadrosh E; Kebreab E; Hess M
    Anim Microbiome; 2019 Feb; 1(1):3. PubMed ID: 33499933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.
    Sun F; Aguerre MJ; Wattiaux MA
    J Dairy Sci; 2019 Feb; 102(2):1281-1293. PubMed ID: 30591340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows.
    Bougouin A; Ferlay A; Doreau M; Martin C
    J Dairy Sci; 2018 Jul; 101(7):6085-6097. PubMed ID: 29680648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiome-informed study of the mechanistic basis of methane inhibition by
    Indugu N; Narayan K; Stefenoni HA; Hennessy ML; Vecchiarelli B; Bender JS; Shah R; Dai G; Garapati S; Yarish C; Welchez SC; Räisänen SE; Wasson D; Lage C; Melgar A; Hristov AN; Pitta DW
    mBio; 2024 Aug; 15(8):e0078224. PubMed ID: 38953639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows.
    Hatew B; Podesta SC; Van Laar H; Pellikaan WF; Ellis JL; Dijkstra J; Bannink A
    J Dairy Sci; 2015 Jan; 98(1):486-99. PubMed ID: 25465630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.
    Olijhoek DW; Hellwing ALF; Brask M; Weisbjerg MR; Højberg O; Larsen MK; Dijkstra J; Erlandsen EJ; Lund P
    J Dairy Sci; 2016 Aug; 99(8):6191-6205. PubMed ID: 27236758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.