BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33802218)

  • 41. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photosystem II repair in marine diatoms with contrasting photophysiologies.
    Lavaud J; Six C; Campbell DA
    Photosynth Res; 2016 Feb; 127(2):189-99. PubMed ID: 26156125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility.
    Sivakumaran A; Akinyemi A; Mandon J; Cristescu SM; Hall MA; Harren FJ; Mur LA
    Front Plant Sci; 2016; 7():709. PubMed ID: 27252724
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis.
    Moustaka J; Moustakas M
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in
    Sperdouli I; Moustaka J; Antonoglou O; Adamakis IS; Dendrinou-Samara C; Moustakas M
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods.
    Tryfon P; Sperdouli I; Adamakis IS; Mourdikoudis S; Dendrinou-Samara C; Moustakas M
    Plants (Basel); 2023 Oct; 12(19):. PubMed ID: 37836242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa.
    Lu C; Qiu N; Wang B; Zhang J
    J Exp Bot; 2003 Feb; 54(383):851-60. PubMed ID: 12554728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eco-Physiological Screening of Different Tomato Genotypes in Response to High Temperatures: A Combined Field-to-Laboratory Approach.
    Arena C; Conti S; Francesca S; Melchionna G; Hájek J; Barták M; Barone A; Rigano MM
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32326566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Function of miR825 and miR825* as Negative Regulators in
    Nie P; Chen C; Yin Q; Jiang C; Guo J; Zhao H; Niu D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress.
    Sperdouli I; Moustakas M
    Plant Biol (Stuttg); 2012 Jan; 14(1):118-28. PubMed ID: 21972900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora).
    Janka E; Körner O; Rosenqvist E; Ottosen CO
    Plant Physiol Biochem; 2015 May; 90():14-22. PubMed ID: 25749731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological Control of Tomato Gray Mold Caused by
    Sarven MS; Hao Q; Deng J; Yang F; Wang G; Xiao Y; Xiao X
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32183055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 6-deoxy-6-amino chitosan: a preventative treatment in the tomato/
    Moola N; Jardine A; Audenaert K; Rafudeen MS
    Front Plant Sci; 2023; 14():1282050. PubMed ID: 37881612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change.
    Derks A; Schaven K; Bruce D
    Biochim Biophys Acta; 2015; 1847(4-5):468-485. PubMed ID: 25687894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SKIP Silencing Decreased Disease Resistance Against
    Zhang H; Yin L; Song F; Jiang M
    Front Plant Sci; 2020; 11():593267. PubMed ID: 33381133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis.
    Zhang H; Xu Z; Guo K; Huo Y; He G; Sun H; Guan Y; Xu N; Yang W; Sun G
    Ecotoxicol Environ Saf; 2020 Oct; 202():110856. PubMed ID: 32629202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.