These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33802744)

  • 1. Evaluating the Ability of Multi-Sensor Techniques to Capture Topographic Complexity.
    Cooper HM; Wasklewicz T; Zhu Z; Lewis W; LeCompte K; Heffentrager M; Smaby R; Brady J; Howard R
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating Practical Impacts of Using Single-Antenna and Dual-Antenna GNSS/INS Sensors in UAS-Lidar Applications.
    Brazeal RG; Wilkinson BE; Benjamin AR
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pole-Like Object Extraction and Pole-Aided GNSS/IMU/LiDAR-SLAM System in Urban Area.
    Liu T; Chang L; Niu X; Liu J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration.
    Chang L; Niu X; Liu T
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments.
    Elamin A; Abdelaziz N; El-Rabbany A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.
    Du H; Wang W; Xu C; Xiao R; Sun C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LiDAR-Stabilised GNSS-IMU Platform Pose Tracking.
    D'Adamo T; Phillips T; McAree P
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
    Christiansen MP; Laursen MS; Jørgensen RN; Skovsen S; Gislum R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Georeferencing Accuracy of a Photogrammetric Model Using a Quadrocopter with Onboard GNSS RTK.
    Štroner M; Urban R; Reindl T; Seidl J; Brouček J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Test on the Potential of a Low Cost Unmanned Aerial Vehicle RTK/PPK Solution for Precision Positioning.
    Famiglietti NA; Cecere G; Grasso C; Memmolo A; Vicari A
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Different LiDAR Technologies for the Documentation of Forgotten Cultural Heritage under Forest Environments.
    Maté-González MÁ; Di Pietra V; Piras M
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
    Pricope NG; Halls JN; Mapes KL; Baxley JB; Wu JJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cost Effective Mobile Mapping System for Color Point Cloud Reconstruction.
    Peng CW; Hsu CC; Wang WY
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems.
    Hong S; Park I; Lee J; Lim K; Choi Y; Sohn HG
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Mobile Laser Scanning towards Operational Accurate Road Rut Depth Measurements.
    El Issaoui A; Feng Z; Lehtomäki M; Hyyppä E; Hyyppä H; Kaartinen H; Kukko A; Hyyppä J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33567550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Assessment of an Ultra Low-Cost Inertial Measurement Unit for Ground Vehicle Navigation.
    Gonzalez R; Dabove P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.