These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33802772)

  • 1. Aptamers, Riboswitches, and Ribozymes in
    Ge H; Marchisio MA
    Life (Basel); 2021 Mar; 11(3):. PubMed ID: 33802772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing RNA origami scaffolds in Saccharomyces cerevisiae for dCas9-mediated transcriptional control.
    Pothoulakis G; Nguyen MTA; Andersen ES
    Nucleic Acids Res; 2022 Jul; 50(12):7176-7187. PubMed ID: 35648481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices.
    Weigand JE; Wittmann A; Suess B
    Methods Mol Biol; 2012; 813():157-68. PubMed ID: 22083741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research.
    Wrist A; Sun W; Summers RM
    ACS Synth Biol; 2020 Apr; 9(4):682-697. PubMed ID: 32142605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy.
    Cui W; Lin Q; Wu Y; Wang X; Zhang Y; Lin X; Zhang L; Liu X; Han L; Zhou Z
    ACS Synth Biol; 2023 Dec; 12(12):3716-3729. PubMed ID: 38052004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-associated type V proteins as a tool for controlling mRNA stability in S. cerevisiae synthetic gene circuits.
    Yu L; Marchisio MA
    Nucleic Acids Res; 2023 Feb; 51(3):1473-1487. PubMed ID: 36651298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Systems for the Development of
    Meng J; Qiu Y; Shi S
    Front Bioeng Biotechnol; 2020; 8():594347. PubMed ID: 33330425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System.
    Lian J; HamediRad M; Zhao H
    Biotechnol J; 2018 Sep; 13(9):e1700601. PubMed ID: 29436783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.
    Klauser B; Atanasov J; Siewert LK; Hartig JS
    ACS Synth Biol; 2015 May; 4(5):516-25. PubMed ID: 24871672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits.
    Zhou Q; Zhan H; Liao X; Fang L; Liu Y; Xie H; Yang K; Gao Q; Ding M; Cai Z; Huang W; Liu Y
    Cell Prolif; 2019 Mar; 52(2):e12552. PubMed ID: 30520167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toolboxes for cyanobacteria: Recent advances and future direction.
    Sun T; Li S; Song X; Diao J; Chen L; Zhang W
    Biotechnol Adv; 2018; 36(4):1293-1307. PubMed ID: 29729377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae.
    Shi S; Liang Y; Ang EL; Zhao H
    Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology.
    Jusiak B; Cleto S; Perez-Piñera P; Lu TK
    Trends Biotechnol; 2016 Jul; 34(7):535-547. PubMed ID: 26809780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic RNA, ribozyme, and its applications in synthetic biology.
    Park SV; Yang JS; Jo H; Kang B; Oh SS; Jung GY
    Biotechnol Adv; 2019 Dec; 37(8):107452. PubMed ID: 31669138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.