These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33802785)
1. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation. Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785 [TBL] [Abstract][Full Text] [Related]
2. Sprayer boom height measurement in wheat field using ultrasonic sensor: An exploratory study. Zhao X; Zhai C; Wang S; Dou H; Yang S; Wang X; Chen L Front Plant Sci; 2022; 13():1008122. PubMed ID: 36483955 [TBL] [Abstract][Full Text] [Related]
3. A Crop Canopy Localization Method Based on Ultrasonic Ranging and Iterative Self-Organizing Data Analysis Technique Algorithm. Li F; Bai X; Li Y Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028735 [TBL] [Abstract][Full Text] [Related]
4. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. Jimenez-Berni JA; Deery DM; Rozas-Larraondo P; Condon ATG; Rebetzke GJ; James RA; Bovill WD; Furbank RT; Sirault XRR Front Plant Sci; 2018; 9():237. PubMed ID: 29535749 [TBL] [Abstract][Full Text] [Related]
5. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154 [TBL] [Abstract][Full Text] [Related]
6. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data. Jing L; Wei X; Song Q; Wang F Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163 [TBL] [Abstract][Full Text] [Related]
7. Assessing the Capability and Potential of LiDAR for Weed Detection. Shahbazi N; Ashworth MB; Callow JN; Mian A; Beckie HJ; Speidel S; Nicholls E; Flower KC Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810604 [TBL] [Abstract][Full Text] [Related]
8. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Llorens J; Gil E; Llop J; Escolà A Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405 [TBL] [Abstract][Full Text] [Related]
9. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Gil E; Llorens J; Llop J; Fàbregas X; Gallart M Sensors (Basel); 2013 Jan; 13(1):516-34. PubMed ID: 23282583 [TBL] [Abstract][Full Text] [Related]
10. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat. Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436 [TBL] [Abstract][Full Text] [Related]
11. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819 [TBL] [Abstract][Full Text] [Related]
12. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data. Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258 [TBL] [Abstract][Full Text] [Related]
13. Correction of UAV LiDAR-derived grassland canopy height based on scan angle. Xu C; Zhao D; Zheng Z; Zhao P; Chen J; Li X; Zhao X; Zhao Y; Liu W; Wu B; Zeng Y Front Plant Sci; 2023; 14():1108109. PubMed ID: 37021312 [TBL] [Abstract][Full Text] [Related]
15. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding. Walter JDC; Edwards J; McDonald G; Kuchel H Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889 [TBL] [Abstract][Full Text] [Related]
16. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution. Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840 [TBL] [Abstract][Full Text] [Related]
17. CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray. Gu C; Zhai C; Wang X; Wang S Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205819 [TBL] [Abstract][Full Text] [Related]
18. Design of inductive electrostatic boom spray system based on embedded closed electrode structure and droplet distribution test in soybean field. Liu C; Hu J; Cao R; Li Y; Zhao S; Li Q; Zhang W Front Plant Sci; 2024; 15():1367781. PubMed ID: 38952844 [TBL] [Abstract][Full Text] [Related]
19. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Griffith KT; Ponette-González AG; Curran LM; Weathers KC Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759 [TBL] [Abstract][Full Text] [Related]
20. Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Christiansen MP; Laursen MS; Jørgensen RN; Skovsen S; Gislum R Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]