These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33802798)
1. GABA-Producing Redruello B; Saidi Y; Sampedro L; Ladero V; Del Rio B; Alvarez MA Foods; 2021 Mar; 10(3):. PubMed ID: 33802798 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing Valenzuela JA; Vázquez L; Rodríguez J; Flórez AB; Vasek OM; Mayo B Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397005 [TBL] [Abstract][Full Text] [Related]
3. Effects of mixed starter composition on nisin Z production by lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese. Bouksaim M; Lacroix C; Audet P; Simard RE Int J Food Microbiol; 2000 Sep; 59(3):141-56. PubMed ID: 11020036 [TBL] [Abstract][Full Text] [Related]
4. Production of γ-aminobutyric acid (GABA) by lactic acid bacteria strains isolated from traditional, starter-free dairy products made of raw milk. Valenzuela JA; Flórez AB; Vázquez L; Vasek OM; Mayo B Benef Microbes; 2019 May; 10(5):579-587. PubMed ID: 31122043 [TBL] [Abstract][Full Text] [Related]
5. Effect of wild strains of Lactococcus lactis on the volatile profile and the sensory characteristics of ewes' raw milk cheese. Centeno JA; Tomillo FJ; Fernández-García E; Gaya P; Nuñez M J Dairy Sci; 2002 Dec; 85(12):3164-72. PubMed ID: 12512589 [TBL] [Abstract][Full Text] [Related]
6. Effect of Lactococcus lactis expressing phage endolysin on the late blowing defect of cheese caused by Clostridium tyrobutyricum. Garde S; Calzada J; Sánchez C; Gaya P; Narbad A; Meijers R; Mayer MJ; Ávila M Int J Food Microbiol; 2020 Sep; 329():108686. PubMed ID: 32516659 [TBL] [Abstract][Full Text] [Related]
7. Metabolome analysis of milk fermented by γ-aminobutyric acid-producing Lactococcus lactis. Hagi T; Kobayashi M; Nomura M J Dairy Sci; 2016 Feb; 99(2):994-1001. PubMed ID: 26686724 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. Gutiérrez-Méndez N; Vallejo-Cordoba B; González-Córdova AF; Nevárez-Moorillón GV; Rivera-Chavira B J Dairy Sci; 2008 Jan; 91(1):49-57. PubMed ID: 18096924 [TBL] [Abstract][Full Text] [Related]
9. Characterization of unique metabolites in γ-aminobutyric acid-rich cheese by metabolome analysis using liquid chromatography-mass spectrometry. Hagi T; Nakagawa H; Ohmori H; Sasaki K; Kobayashi M; Narita T; Nomura M J Food Biochem; 2019 Nov; 43(11):e13039. PubMed ID: 31489647 [TBL] [Abstract][Full Text] [Related]
10. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Alegría A; Delgado S; Roces C; López B; Mayo B Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289 [TBL] [Abstract][Full Text] [Related]
11. Production of gamma-aminobutyric acid by cheese starters during cheese ripening. Nomura M; Kimoto H; Someya Y; Furukawa S; Suzuki I J Dairy Sci; 1998 Jun; 81(6):1486-91. PubMed ID: 9684157 [TBL] [Abstract][Full Text] [Related]
12. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses. Chiang ML; Chen HC; Wang SY; Hsieh YL; Chen MJ J Food Sci; 2011 Sep; 76(7):M504-10. PubMed ID: 22417556 [TBL] [Abstract][Full Text] [Related]
13. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening. Hayaloglu AA; Guven M; Fox PF; McSweeney PL J Dairy Sci; 2005 Oct; 88(10):3460-74. PubMed ID: 16162519 [TBL] [Abstract][Full Text] [Related]
14. Fate of Lactococcus lactis starter cultures during late ripening in cheese models. Ruggirello M; Cocolin L; Dolci P Food Microbiol; 2016 Oct; 59():112-8. PubMed ID: 27375251 [TBL] [Abstract][Full Text] [Related]
15. Volatile and sensory evaluation of Mexican Fresco cheese as affected by specific wild Lactococcus lactis strains. Reyes-Díaz R; González-Córdova AF; Del Carmen Estrada-Montoya M; Méndez-Romero JI; Mazorra-Manzano MA; Soto-Valdez H; Vallejo-Cordoba B J Dairy Sci; 2020 Jan; 103(1):242-253. PubMed ID: 31733845 [TBL] [Abstract][Full Text] [Related]
16. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses. Franciosi E; Carafa I; Nardin T; Schiavon S; Poznanski E; Cavazza A; Larcher R; Tuohy KM Biomed Res Int; 2015; 2015():625740. PubMed ID: 25802859 [TBL] [Abstract][Full Text] [Related]
17. Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Renes E; Ladero V; Tornadijo ME; Fresno JM Food Microbiol; 2019 Apr; 78():1-10. PubMed ID: 30497589 [TBL] [Abstract][Full Text] [Related]
18. Suitability of a new mixed-strain starter for manufacturing uncooked raw ewe's milk cheeses. Feutry F; Torre P; Arana I; Garcia S; Pérez Elortondo FJ; Berthier F Food Microbiol; 2016 Jun; 56():52-68. PubMed ID: 26919818 [TBL] [Abstract][Full Text] [Related]
19. Starter strain related effects on the biochemical and sensory properties of Cheddar cheese. Hickey DK; Kilcawley KN; Beresford TP; Sheehan EM; Wilkinson MG J Dairy Res; 2007 Feb; 74(1):9-17. PubMed ID: 16987432 [TBL] [Abstract][Full Text] [Related]
20. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. Dal Bello B; Cocolin L; Zeppa G; Field D; Cotter PD; Hill C Int J Food Microbiol; 2012 Feb; 153(1-2):58-65. PubMed ID: 22104121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]