BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33802984)

  • 21. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ; Lemoine M; Clarke D; Gonzalez Vazquez A; O'Brien FJ
    Mar Drugs; 2020 Jan; 18(2):. PubMed ID: 31979233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs).
    Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering.
    Kamath MS; Ahmed SS; Dhanasekaran M; Santosh SW
    Int J Nanomedicine; 2014; 9():183-95. PubMed ID: 24399875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration.
    Chandramohan Y; Jeganathan K; Sivanesan S; Koka P; Amritha TMS; Vimalraj S; Dhanasekaran A
    Life Sci; 2021 Jan; 264():118502. PubMed ID: 33031825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders.
    Kavanaugh TE; Clark AY; Chan-Chan LH; Ramírez-Saldaña M; Vargas-Coronado RF; Cervantes-Uc JM; Hernández-Sánchez F; García AJ; Cauich-Rodríguez JV
    J Mater Sci Mater Med; 2016 Feb; 27(2):38. PubMed ID: 26704555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue.
    Ravichandran A; Lim J; Chong MSK; Wen F; Liu Y; Pillay YT; Chan JKY; Teoh SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2366-2375. PubMed ID: 27527120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds.
    Mahsa Khatami S; Parivar K; Naderi Sohi A; Soleimani M; Hanaee-Ahvaz H
    Tissue Cell; 2020 Aug; 65():101363. PubMed ID: 32746987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells.
    Rostami F; Tamjid E; Behmanesh M
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111102. PubMed ID: 32600706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application.
    Poddar D; Jain P; Rawat S; Mohanty S
    Carbohydr Polym; 2021 May; 259():117501. PubMed ID: 33673978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
    Zhang ZY; Teoh SH; Chong MS; Schantz JT; Fisk NM; Choolani MA; Chan J
    Stem Cells; 2009 Jan; 27(1):126-37. PubMed ID: 18832592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study.
    Shkarina S; Shkarin R; Weinhardt V; Melnik E; Vacun G; Kluger PJ; Loza K; Epple M; Ivlev SI; Baumbach T; Surmeneva MA; Surmenev RA
    Sci Rep; 2018 Jun; 8(1):8907. PubMed ID: 29891842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering.
    Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D
    J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.