BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33803012)

  • 1. Design and Validation of Computerized Flight-Testing Systems with Controlled Atmosphere for Studying Flight Behavior of Red Palm Weevil,
    Mohammed M; El-Shafie H; Alqahtani N
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Far Can the Red Palm Weevil (Coleoptera: Curculionidae) Fly?: Computerized Flight Mill Studies With Field-Captured Weevils.
    Hoddle MS; Hoddle CD; Faleiro JR; El-Shafie HA; Jeske DR; Sallam AA
    J Econ Entomol; 2015 Dec; 108(6):2599-609. PubMed ID: 26470385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The First Report for the Presence of Spiroplasma and Rickettsia in Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Egypt.
    Awad M; Sharaf A; Elrahman TA; El-Saadany HM; ElKraly OA; Elnagdy SM
    Acta Parasitol; 2021 Jun; 66(2):593-604. PubMed ID: 33389546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Far Can Rhynchophorus palmarum (Coleoptera: Curculionidae) Fly?
    Hoddle MS; Hoddle CD; Milosavljević I
    J Econ Entomol; 2020 Aug; 113(4):1786-1795. PubMed ID: 32510131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Detection of Red Palm Weevil,
    Kurdi H; Al-Aldawsari A; Al-Turaiki I; Aldawood AS
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33418843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill.
    Ávalos JA; Martí-Campoy A; Soto A
    Bull Entomol Res; 2014 Aug; 104(4):462-70. PubMed ID: 24739938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food Consumption, Developmental Time, and Protein Profile of the Digestive System of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleptera: Dryophthoridae) Larvae Reared on Three Different Diets.
    Zulkifli AN; Zakeri HA; Azmi WA
    J Insect Sci; 2018 Sep; 18(5):. PubMed ID: 30285257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virulence of entomopathogenic bacteria
    Zhong B; Lv C; Li W; Li C; Chen T
    PeerJ; 2023; 11():e16528. PubMed ID: 38054022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility and possible resistance mechanisms in the palm species Phoenix dactylifera, Chamaerops humilis and Washingtonia filifera against Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae).
    Cangelosi B; Clematis F; Curir P; Monroy F
    Bull Entomol Res; 2016 Jun; 106(3):341-6. PubMed ID: 26976073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of adaptive genetic diversity and chemical composition in date palm cultivars and their implications in controlling red palm weevil, Rhynchophorus ferrugineus Oliver.
    Abdel-Baky NF; Motawei MI; Al-Nujiban AAS; Aldeghairi MA; Al-Shuraym LAM; Alharbi MTM; Alsohim AS; Rehan M
    Braz J Biol; 2023; 83():e270940. PubMed ID: 37042912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aerodynamics of flight in an insect flight-mill.
    Ribak G; Barkan S; Soroker V
    PLoS One; 2017; 12(11):e0186441. PubMed ID: 29091924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of artificial diets on the biological and chemical properties of red palm weevil, Rhynchophorus Ferrugineus Olivier (Coleoptera:Curculionidae).
    Abdel-Hameid NF
    Braz J Biol; 2022; 84():e264413. PubMed ID: 36169409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Gut Bacteria on the Physiology of Red Palm Weevil,
    Liu QX; Su ZP; Liu HH; Lu SP; Ma B; Zhao Y; Hou YM; Shi ZH
    Insects; 2021 Jun; 12(7):. PubMed ID: 34208921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus).
    Antony B; Johny J; Montagné N; Jacquin-Joly E; Capoduro R; Cali K; Persaud K; Al-Saleh MA; Pain A
    Mol Ecol; 2021 May; 30(9):2025-2039. PubMed ID: 33687767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis.
    Antony B; Soffan A; Jakše J; Abdelazim MM; Aldosari SA; Aldawood AS; Pain A
    BMC Genomics; 2016 Jan; 17():69. PubMed ID: 26800671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Red Palm Weevil
    Muhammad A; Habineza P; Hou Y; Shi Z
    Bio Protoc; 2019 Dec; 9(24):e3456. PubMed ID: 33654951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset on the influence of relative humidity on the pathogenicity of
    Cheong JL; Azmi WA
    Data Brief; 2020 Jun; 30():105482. PubMed ID: 32368576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gut Entomotype of Red Palm Weevil
    Muhammad A; Fang Y; Hou Y; Shi Z
    Front Microbiol; 2017; 8():2291. PubMed ID: 29209298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil,
    Habineza P; Muhammad A; Ji T; Xiao R; Yin X; Hou Y; Shi Z
    Front Microbiol; 2019; 10():1212. PubMed ID: 31191510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects.
    Martí-Campoy A; Ávalos JA; Soto A; Rodríguez-Ballester F; Martínez-Blay V; Malumbres MP
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.