These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33803040)

  • 21. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.
    Lin PT; Chu HY; Lu TW; Lee PT
    Lab Chip; 2014 Dec; 14(24):4647-52. PubMed ID: 25288366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Fluence Chromium and Tungsten Bowtie Nano-antennas.
    Morshed M; Li Z; Olbricht BC; Fu L; Haque A; Li L; Rifat AA; Rahmani M; Miroshnichenko AE; Hattori HT
    Sci Rep; 2019 Sep; 9(1):13023. PubMed ID: 31506576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable trapping of single nanosized extracellular vesicles using plasmonics.
    Hong C; Ndukaife JC
    Nat Commun; 2023 Aug; 14(1):4801. PubMed ID: 37558710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays.
    Wang B; Zou Y; Lu H; Kong W; Singh SC; Zhao C; Yao C; Xing J; Zheng X; Yu Z; Tong C; Xin W; Yu W; Zhao B; Guo C
    Small; 2020 Jun; 16(24):e2001417. PubMed ID: 32407005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
    Sharac N; Sharma H; Veysi M; Sanderson RN; Khine M; Capolino F; Ragan R
    Nanotechnology; 2016 Mar; 27(10):105302. PubMed ID: 26867001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromagnetic field hugely enhanced by coupling to optical energy focusing structure.
    Li W; Hou Y
    Opt Express; 2017 Apr; 25(7):7358-7368. PubMed ID: 28380859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams.
    Yang S; Allen JA; Hong C; Arnold KP; Weiss SM; Ndukaife JC
    Phys Rev Lett; 2023 Feb; 130(8):083802. PubMed ID: 36898095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic trapping and tuning of a gold nanoparticle dimer.
    Shen Z; Su L
    Opt Express; 2016 Mar; 24(5):4801-4811. PubMed ID: 29092308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties.
    Lin S; Guan H; Liu Y; Huang S; Li J; Hasi W; Xu Y; Zou J; Dong B
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53289-53299. PubMed ID: 34704435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities.
    Chou Chau YF; Chou Chao CT; Rao JY; Chiang HP; Lim CM; Lim RC; Voo NY
    Nanoscale Res Lett; 2016 Dec; 11(1):411. PubMed ID: 27644237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic optical trapping of nanoparticles with precise angular selectivity.
    Chai RH; Zou WJ; Qian J; Chen J; Sun Q; Xu JJ
    Opt Express; 2019 Oct; 27(22):32556-32566. PubMed ID: 31684465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Huge light-enhancement by coupling a Bowtie Nano-antenna's plasmonic resonance to a photonic crystal mode.
    Eter AE; Grosjean T; Viktorovitch P; Letartre X; Benyattou T; Baida FI
    Opt Express; 2014 Jun; 22(12):14464-72. PubMed ID: 24977543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.