These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33803101)
1. Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior. Seidenstuecker M; Schmeichel T; Ritschl L; Vinke J; Schilling P; Schmal H; Bernstein A Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803101 [TBL] [Abstract][Full Text] [Related]
2. Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2. Ritschl L; Schilling P; Wittmer A; Bohner M; Bernstein A; Schmal H; Seidenstuecker M J Mater Sci Mater Med; 2023 Jul; 34(8):39. PubMed ID: 37498466 [TBL] [Abstract][Full Text] [Related]
3. A human bone infection organ model for biomaterial research. Kuehling T; Schilling P; Bernstein A; Mayr HO; Serr A; Wittmer A; Bohner M; Seidenstuecker M Acta Biomater; 2022 May; 144():230-241. PubMed ID: 35304323 [TBL] [Abstract][Full Text] [Related]
4. Dual release of daptomycin and BMP-2 from a composite of β-TCP ceramic and ADA gelatin. Ritschl L; Schilling P; Wittmer A; Serr A; Schmal H; Seidenstuecker M BMC Biotechnol; 2024 Jun; 24(1):38. PubMed ID: 38831403 [TBL] [Abstract][Full Text] [Related]
5. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Seidenstuecker M; Ruehe J; Suedkamp NP; Serr A; Wittmer A; Bohner M; Bernstein A; Mayr HO Acta Biomater; 2017 Mar; 51():433-446. PubMed ID: 28104468 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. Sarker B; Papageorgiou DG; Silva R; Zehnder T; Gul-E-Noor F; Bertmer M; Kaschta J; Chrissafis K; Detsch R; Boccaccini AR J Mater Chem B; 2014 Mar; 2(11):1470-1482. PubMed ID: 32261366 [TBL] [Abstract][Full Text] [Related]
7. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. Seidenstuecker M; Kissling S; Ruehe J; Suedkamp NP; Mayr HO; Bernstein A J Funct Biomater; 2015 Dec; 6(4):1085-98. PubMed ID: 26703749 [TBL] [Abstract][Full Text] [Related]
8. How does the piston material affect the in vitro mechanical behavior of dental ceramics? Weber KR; Benetti P; Della Bona Á; Corazza PH; Medeiros JA; Lodi E; Borba M J Prosthet Dent; 2018 Nov; 120(5):747-754. PubMed ID: 30017165 [TBL] [Abstract][Full Text] [Related]
9. Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier. Kissling S; Seidenstuecker M; Pilz IH; Suedkamp NP; Mayr HO; Bernstein A BMC Biotechnol; 2016 May; 16(1):44. PubMed ID: 27206764 [TBL] [Abstract][Full Text] [Related]
10. Porous bioceramics reinforced by coating gelatin. Liu B; Lin P; Shen Y; Dong Y J Mater Sci Mater Med; 2008 Mar; 19(3):1203-7. PubMed ID: 17701298 [TBL] [Abstract][Full Text] [Related]
11. The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. Chaiyabutr Y; McGowan S; Phillips KM; Kois JC; Giordano RA J Prosthet Dent; 2008 Sep; 100(3):194-202. PubMed ID: 18762031 [TBL] [Abstract][Full Text] [Related]
12. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984 [TBL] [Abstract][Full Text] [Related]
13. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics. Kulkarni A; Rothrock J; Thompson J J Prosthodont; 2020 Mar; 29(3):207-218. PubMed ID: 29333707 [TBL] [Abstract][Full Text] [Related]
14. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Belli R; Geinzer E; Muschweck A; Petschelt A; Lohbauer U Dent Mater; 2014 Apr; 30(4):424-32. PubMed ID: 24553249 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. Nguyen TP; Lee BT J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610 [TBL] [Abstract][Full Text] [Related]
16. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution. Dartora G; Rocha Pereira GK; Varella de Carvalho R; Zucuni CP; Valandro LF; Cesar PF; Caldas RA; Bacchi A J Mech Behav Biomed Mater; 2019 Dec; 100():103401. PubMed ID: 31445400 [TBL] [Abstract][Full Text] [Related]
18. Relationship between ceramic primer and ceramic surface pH on the bonding of dual-cure resin cement to ceramic. Foxton RM; Nakajima M; Hiraishi N; Kitasako Y; Tagami J; Nomura S; Miura H Dent Mater; 2003 Dec; 19(8):779-89. PubMed ID: 14511737 [TBL] [Abstract][Full Text] [Related]
19. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices. Wei CK; Ding SJ J Mech Behav Biomed Mater; 2016 Sep; 62():366-383. PubMed ID: 27254281 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Vásquez VZ; Ozcan M; Kimpara ET Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]