BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33803254)

  • 1. The Inactivation by Curcumin-Mediated Photosensitization of
    Huang L; Yong KWL; Fernando WC; Carpinelli de Jesus M; De Voss JJ; Sultanbawa Y; Fletcher MT
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33803254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry.
    Moussa SH; Tayel AA; Alsohim AS; Abdallah RR
    J Food Sci; 2013 Oct; 78(10):M1589-M1594. PubMed ID: 24025030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit.
    Romero Bernal AR; Contigiani EV; González HHL; Alzamora SM; Gómez PL; Raffellini S
    Int J Food Microbiol; 2019 Nov; 309():108311. PubMed ID: 31499266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
    Veloukas T; Karaoglanidis GS
    Pest Manag Sci; 2012 Jun; 68(6):858-64. PubMed ID: 22262495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits.
    Aminifard MH; Mohammadi S
    J Sci Food Agric; 2013 Jan; 93(2):348-53. PubMed ID: 22740387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin.
    Al-Asmari F; Mereddy R; Sultanbawa Y
    J Photochem Photobiol B; 2017 Aug; 173():301-306. PubMed ID: 28623822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curcumin Induces Oxidative Stress in
    Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D
    J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea.
    Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z
    Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of some compounds on the decay of strawberry fruits caused by Botrytis cinerea Pers.
    Mazur S; Waksmundzka A
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):227-31. PubMed ID: 12425042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The natural fenhexamid-resistant grey mould populations from strawberry in Zhejiang Province are dominated by Botrytis cinerea group S.
    Yin D; Wu S; Liu N; Yin Y; Ma Z
    Pest Manag Sci; 2016 Aug; 72(8):1540-8. PubMed ID: 26537826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies.
    Weber RWS; Hahn M
    Appl Microbiol Biotechnol; 2019 Feb; 103(4):1589-1597. PubMed ID: 30610288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea.
    Liñeiro E; Macias-Sánchez AJ; Espinazo M; Cantoral JM; Moraga J; Collado IG; Fernández-Acero FJ
    Curr Microbiol; 2018 Apr; 75(4):431-440. PubMed ID: 29147762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.