These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33803303)
1. High-Throughput Cell Trapping in the Dentate Spiral Microfluidic Channel. Lu J; Dai B; Wang K; Long Y; Yang Z; Chen J; Huang S; Zheng L; Fu Y; Wan W; Zhuang S; Guan Y; Zhang D Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803303 [TBL] [Abstract][Full Text] [Related]
2. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells. Lawrenz A; Nason F; Cooper-White JJ Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic device enabling high-efficiency single cell trapping. Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513 [TBL] [Abstract][Full Text] [Related]
4. A Resistance-Based Microfluidic Chip for Deterministic Single Cell Trapping Followed by Immunofluorescence Staining. Sun X; Li B; Li W; Ren X; Su N; Li R; Li J; Huang Q Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014194 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Chen J; Chen D; Yuan T; Xie Y; Chen X Biomicrofluidics; 2013; 7(3):34106. PubMed ID: 24404026 [TBL] [Abstract][Full Text] [Related]
6. Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing. Lipp C; Uning K; Cottet J; Migliozzi D; Bertsch A; Renaud P Lab Chip; 2021 Sep; 21(19):3686-3694. PubMed ID: 34518854 [TBL] [Abstract][Full Text] [Related]
7. Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device. Tayebi M; Zhou Y; Tripathi P; Chandramohanadas R; Ai Y Anal Chem; 2020 Aug; 92(15):10733-10742. PubMed ID: 32613828 [TBL] [Abstract][Full Text] [Related]
9. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting. Sun X; Feng Z; Zhi S; Lei C; Zhang D; Zhou Y Sci Rep; 2017 Oct; 7(1):12967. PubMed ID: 29021533 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation. Shen S; Liu X; Fan K; Bai H; Li X; Li H Anal Chem; 2024 Jul; 96(28):11412-11421. PubMed ID: 38954777 [TBL] [Abstract][Full Text] [Related]
11. Trapping DNA with a high throughput microfluidic device. Montes RJ; Butler JE; Ladd AJC Electrophoresis; 2019 Feb; 40(3):437-446. PubMed ID: 30229964 [TBL] [Abstract][Full Text] [Related]
12. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation. Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805 [TBL] [Abstract][Full Text] [Related]
13. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Bhattacharya S; Chao TC; Ros A Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497 [TBL] [Abstract][Full Text] [Related]
14. Nano/microfluidic device for high-throughput passive trapping of nanoparticles. Wells T; Schmidt H; Hawkins A Biomicrofluidics; 2023 Dec; 17(6):064101. PubMed ID: 37928800 [TBL] [Abstract][Full Text] [Related]
15. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application. Khalili AA; Ahmad MR Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218 [TBL] [Abstract][Full Text] [Related]
16. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Song Y; Yang J; Pan X; Li D Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672 [TBL] [Abstract][Full Text] [Related]
17. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Wu Y; Ren Y; Tao Y; Hou L; Jiang H Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196 [TBL] [Abstract][Full Text] [Related]
18. Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array. Yousang Yoon ; Sunki Cho ; Seonil Kim ; Eunsuk Choi ; Rae-Kwon Kim ; Su-Jae Lee ; Onejae Sul ; Seung-Beck Lee Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4431-4. PubMed ID: 25570975 [TBL] [Abstract][Full Text] [Related]
19. The Efficiency of Live-Capture Traps for the Study of Red Fox ( Mierzejewska EJ; Dwużnik D; Tołkacz K; Bajer A; Panek M; Grzybek M Animals (Basel); 2020 Feb; 10(3):. PubMed ID: 32110960 [TBL] [Abstract][Full Text] [Related]
20. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]