BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 3380338)

  • 21. Mature oligodendrocytes. Division following experimental demyelination in adult animals.
    Arenella LS; Herndon RM
    Arch Neurol; 1984 Nov; 41(11):1162-5. PubMed ID: 6487099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remyelination in the rat dorsal funiculus following demyelination by laser irradiation.
    Sato K; Ohmae E; Senoo E; Mase T; Tohyama K; Fujimoto E; Mizoguchi A; Ide C
    Neurosci Res; 1997 Aug; 28(4):325-35. PubMed ID: 9274828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myelination by transplanted fetal and neonatal oligodendrocytes in a dysmyelinating mutant.
    Friedman E; Nilaver G; Carmel P; Perlow M; Spatz L; Latov N
    Brain Res; 1986 Jul; 378(1):142-6. PubMed ID: 2427154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflammation stimulates remyelination in areas of chronic demyelination.
    Foote AK; Blakemore WF
    Brain; 2005 Mar; 128(Pt 3):528-39. PubMed ID: 15699059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Failure of remyelination in the nonhuman primate optic nerve.
    Lachapelle F; Bachelin C; Moissonnier P; Nait-Oumesmar B; Hidalgo A; Fontaine D; Baron-Van Evercooren A
    Brain Pathol; 2005 Jul; 15(3):198-207. PubMed ID: 16196386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Schwann cell and oligodendrocyte remyelination in lysolecithin-induced lesions in irradiated rat spinal cord.
    Harrison B
    J Neurol Sci; 1985 Feb; 67(2):143-59. PubMed ID: 3981217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat.
    Duncan ID; Hammang JP; Jackson KF; Wood PM; Bunge RP; Langford L
    J Neurocytol; 1988 Jun; 17(3):351-60. PubMed ID: 3171610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells.
    Zujovic V; Thibaud J; Bachelin C; Vidal M; Coulpier F; Charnay P; Topilko P; Baron-Van Evercooren A
    Stem Cells; 2010 Mar; 28(3):470-9. PubMed ID: 20039366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultures of shiverer mutant cerebellum injected with normal oligodendrocytes make both normal and shiverer myelin.
    Billings-Gagliardi S; Hall AL; Stanhope GB; Altschuler RJ; Sidman RL; Wolf MK
    Proc Natl Acad Sci U S A; 1984 Apr; 81(8):2558-61. PubMed ID: 6585815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration of myelin and oligodendrocytes in the central nervous system.
    Ludwin SK
    Prog Brain Res; 1987; 71():469-84. PubMed ID: 3588963
    [No Abstract]   [Full Text] [Related]  

  • 31. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells.
    Li Y; Field PM; Raisman G
    Science; 1997 Sep; 277(5334):2000-2. PubMed ID: 9302296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS.
    Blakemore WF; Crang AJ; Franklin RJ; Tang K; Ryder S
    Glia; 1995 Feb; 13(2):79-91. PubMed ID: 7649617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes.
    Crang AJ; Blakemore WF
    Glia; 1991; 4(3):305-13. PubMed ID: 1832658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remyelination in the CNS of the hypothyroid rat.
    Franklin RJ; Gilson JM
    Neuroreport; 1996 Jun; 7(9):1526-30. PubMed ID: 8856713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Survival and differentiation of oligodendrocytes from neural tissue transplanted into new-born mouse brain.
    Gumpel M; Baumann N; Raoul M; Jacque C
    Neurosci Lett; 1983 Jun; 37(3):307-11. PubMed ID: 6193461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Migration and remyelination by oligodendrocyte progenitor cells transplanted adjacent to focal areas of spinal cord inflammation.
    Wang Y; Piao JH; Larsen EC; Kondo Y; Duncan ID
    J Neurosci Res; 2011 Nov; 89(11):1737-46. PubMed ID: 21793039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of remyelination in the CNS by X-irradiation.
    Blakemore WF; Patterson RC
    Acta Neuropathol; 1978 May; 42(2):105-13. PubMed ID: 654883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord.
    Keirstead HS; Blakemore WF
    J Neuropathol Exp Neurol; 1997 Nov; 56(11):1191-201. PubMed ID: 9370229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination.
    Hinks GL; Franklin RJ
    Mol Cell Neurosci; 1999 Aug; 14(2):153-68. PubMed ID: 10532806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia.
    Inoue Y; Nakamura R; Mikoshiba K; Tsukada Y
    Brain Res; 1981 Aug; 219(1):85-94. PubMed ID: 7260630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.