These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33803386)
1. Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality. Casquete R; Benito MJ; Pérez-Nevado F; Martínez A; Martín A; de Guía Córdoba M Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33803386 [TBL] [Abstract][Full Text] [Related]
2. Natural extracts from grape seed and stem by-products in combination with colloidal silver as alternative preservatives to SO Marchante L; Loarce L; Izquierdo-Cañas PM; Alañón ME; García-Romero E; Pérez-Coello MS; Díaz-Maroto MC Food Res Int; 2019 Nov; 125():108594. PubMed ID: 31554048 [TBL] [Abstract][Full Text] [Related]
4. Impact of oenological antioxidant substances on the formation of 1-hydroxyethyl radical and phenolic composition in SO Marchante L; Márquez K; Contreras D; Izquierdo-Cañas PM; García-Romero E; Díaz-Maroto MC J Sci Food Agric; 2020 Jun; 100(8):3401-3407. PubMed ID: 32162341 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of grape stems and grape stem extracts for sulfur dioxide replacement during grape wine production. Nogueira DP; Jiménez-Moreno N; Esparza I; Moler JA; Ferreira-Santos P; Sagües A; Teixeira JA; Ancín-Azpilicueta C Curr Res Food Sci; 2023; 6():100453. PubMed ID: 36815999 [TBL] [Abstract][Full Text] [Related]
6. Influence of Grape Polysaccharide Extracts on the Phenolic Compounds and Color Characteristics of Different Red Wines. Curiel-Fernández M; Cano-Mozo E; Ayestarán B; Guadalupe Z; Pérez-Magariño S J Agric Food Chem; 2024 Jan; 72(4):1985-1994. PubMed ID: 37587088 [TBL] [Abstract][Full Text] [Related]
7. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine. Gonçalves B; Falco V; Moutinho-Pereira J; Bacelar E; Peixoto F; Correia C J Agric Food Chem; 2009 Jan; 57(1):265-73. PubMed ID: 19072054 [TBL] [Abstract][Full Text] [Related]
8. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines. Del-Castillo-Alonso MÁ; Monforte L; Tomás-Las-Heras R; Martínez-Abaigar J; Núñez-Olivera E J Sci Food Agric; 2020 Jan; 100(1):401-409. PubMed ID: 31637723 [TBL] [Abstract][Full Text] [Related]
9. Phenolic concentrations and antioxidant properties of wines made from north american grapes grown in china. Zhu L; Zhang Y; Deng J; Li H; Lu J Molecules; 2012 Mar; 17(3):3304-23. PubMed ID: 22418931 [TBL] [Abstract][Full Text] [Related]
10. Effect of addition of commercial grape seed tannins on phenolic composition, chromatic characteristics, and antioxidant activity of red wine. Neves AC; Spranger MI; Zhao Y; Leandro MC; Sun B J Agric Food Chem; 2010 Nov; 58(22):11775-82. PubMed ID: 21028822 [TBL] [Abstract][Full Text] [Related]
11. Oenological potential of extracts from winery and cooperage by-products in combination with colloidal silver as natural substitutes to sulphur dioxide. Marchante L; Izquierdo-Cañas PM; Gómez-Alonso S; Alañón ME; García-Romero E; Pérez-Coello MS; Díaz-Maroto MC Food Chem; 2019 Mar; 276():485-493. PubMed ID: 30409623 [TBL] [Abstract][Full Text] [Related]
12. Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content. Nogales-Bueno J; Baca-Bocanegra B; Heredia FJ; Hernández-Hierro JM J Food Sci; 2020 Feb; 85(2):324-331. PubMed ID: 31968392 [TBL] [Abstract][Full Text] [Related]
13. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Ivanova-Petropulos V; Ricci A; Nedelkovski D; Dimovska V; Parpinello GP; Versari A Food Chem; 2015 Mar; 171():412-20. PubMed ID: 25308688 [TBL] [Abstract][Full Text] [Related]
14. Phenolics composition and antioxidant activity of wine produced from spine grape (Vitis davidii Foex) and Cherokee rose (Rosa laevigata Michx.) fruits from South China. Meng J; Fang Y; Gao J; Qiao L; Zhang A; Guo Z; Qin M; Huang J; Hu Y; Zhuang X J Food Sci; 2012 Jan; 77(1):C8-14. PubMed ID: 22181048 [TBL] [Abstract][Full Text] [Related]
15. The Use of Grape Seed Byproducts Rich in Flavonoids to Improve the Antioxidant Potential of Red Wines. Jara-Palacios MJ; Hernanz D; Escudero-Gilete ML; Heredia FJ Molecules; 2016 Nov; 21(11):. PubMed ID: 27845756 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Gene Expression Profile, Phenolic Composition, and Antioxidant Capacity in Red-Fleshed Grape Berries and Their Wines. Yue Q; Xu L; Xiang G; Yu X; Yao Y J Agric Food Chem; 2018 Jul; 66(27):7190-7199. PubMed ID: 29920074 [TBL] [Abstract][Full Text] [Related]
17. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review. Li SY; Duan CQ Crit Rev Food Sci Nutr; 2019; 59(12):1840-1867. PubMed ID: 29381384 [TBL] [Abstract][Full Text] [Related]
18. Changes during storage in conventional and ecological wine: phenolic content and antioxidant activity. Zafrilla P; Morillas J; Mulero J; Cayuela JM; Martínez-Cachá A; Pardo F; López Nicolás JM J Agric Food Chem; 2003 Jul; 51(16):4694-700. PubMed ID: 14705898 [TBL] [Abstract][Full Text] [Related]
19. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality. Raposo R; Chinnici F; Ruiz-Moreno MJ; Puertas B; Cuevas FJ; Carbú M; Guerrero RF; Ortíz-Somovilla V; Moreno-Rojas JM; Cantos-Villar E Food Chem; 2018 Mar; 243():453-460. PubMed ID: 29146365 [TBL] [Abstract][Full Text] [Related]
20. Wine, biodiversity, technology, and antioxidants. Mattivi F; Zulian C; Nicolini G; Valenti L Ann N Y Acad Sci; 2002 May; 957():37-56. PubMed ID: 12074960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]