These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3380346)

  • 1. Effects of lesion of paramedian pontomedullary reticular formation by kainic acid injection on the visually triggered horizontal orienting movements in the cat.
    Isa T; Sasaki S
    Neurosci Lett; 1988 May; 87(3):233-9. PubMed ID: 3380346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lesion of pontomedullary reticular formation on visually triggered vertical and oblique head orienting movements in alert cats.
    Sasaki S; Isa T; Naito K
    Neurosci Lett; 1999 Apr; 265(1):13-6. PubMed ID: 10327194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of pontomedullary reticular formation neurons in horizontal head movements: an ibotenic acid lesion study in the cat.
    Suzuki SS; Siegel JM; Wu MF
    Brain Res; 1989 Apr; 484(1-2):78-93. PubMed ID: 2713704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties.
    Grantyn A; Berthoz A
    Exp Brain Res; 1987; 66(2):339-54. PubMed ID: 3595779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Firing characteristics of neurones in the superior colliculus and the pontomedullary reticular formation during orienting in unrestrained cats.
    Sasaki S; Naito K; Oka M
    Prog Brain Res; 1996; 112():99-116. PubMed ID: 8979823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus.
    Cowie RJ; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2648-64. PubMed ID: 7897481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of the projections from the pericruciate cortex to the pontomedullary reticular formation of the cat: a quantitative retrograde tracing study.
    Rho MJ; Cabana T; Drew T
    J Comp Neurol; 1997 Nov; 388(2):228-49. PubMed ID: 9368839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.
    Quessy S; Freedman EG
    Exp Brain Res; 2004 Jun; 156(3):342-56. PubMed ID: 14985893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis.
    Márquez-Ruiz J; Escudero M
    Sleep; 2010 Nov; 33(11):1517-27. PubMed ID: 21102994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; Pélisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrophysiological experiment on neuronal pathway controlling horizontal eye-head coordination in the cat].
    Mori K
    Nippon Ganka Gakkai Zasshi; 1992 Aug; 96(8):993-9. PubMed ID: 1519517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head and eye movements in rats with pontine reticular lesions in comparison with primates: a scientific memoir and a fresh look at some old and 'new' data.
    Sirkin DW
    Behav Brain Res; 2012 Jun; 231(2):371-7. PubMed ID: 22044476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets.
    Freedman EG; Quessy S
    Exp Brain Res; 2004 Jun; 156(3):357-76. PubMed ID: 14985900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey.
    Strassman A; Evinger C; McCrea RA; Baker RG; Highstein SM
    Exp Brain Res; 1987; 67(2):436-40. PubMed ID: 3622701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons.
    Takahashi M; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2014 Feb; 111(4):849-67. PubMed ID: 24285869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat.
    Pélisson D; Goffart L; Guillaume A
    J Neurophysiol; 1998 Sep; 80(3):1180-96. PubMed ID: 9744931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections of vertical eye movement-related and head rotation-related neurons in the medial mesodiencephalic junction to pontine reticular formation in cat.
    Shiraishi Y; Nakao S
    Neurosci Lett; 1994 Apr; 171(1-2):85-8. PubMed ID: 8084505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of neurons in Forel's field H during orienting head movements in alert head-free cats.
    Isa T; Naito K
    Exp Brain Res; 1994; 100(2):187-99. PubMed ID: 7813658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye movement related neurons in the cat pontine reticular formation: projection to the flocculus.
    Nakao S; Curthoys IS; Markham CH
    Brain Res; 1980 Feb; 183(2):291-9. PubMed ID: 6965460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.