These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 33803521)
1. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity. Bila A; Torsæter O Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521 [TBL] [Abstract][Full Text] [Related]
2. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery. Bila A; Stensen JÅ; Torsæter O Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232 [TBL] [Abstract][Full Text] [Related]
3. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897 [TBL] [Abstract][Full Text] [Related]
4. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils. Arekhov V; Hincapie RE; Clemens T; Tahir M Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407 [TBL] [Abstract][Full Text] [Related]
5. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system. Adil M; Mohd Zaid H; Raza F; Agam MA PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369 [TBL] [Abstract][Full Text] [Related]
6. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in Carbonate Reservoirs. Ulasbek K; Hashmet MR; Pourafshary P; Muneer R Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500880 [TBL] [Abstract][Full Text] [Related]
7. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR. Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280 [TBL] [Abstract][Full Text] [Related]
8. Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing. Rezaei A; Abdollahi H; Derikvand Z; Hemmati-Sarapardeh A; Mosavi A; Nabipour N Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443641 [TBL] [Abstract][Full Text] [Related]
9. Effect of nanoparticles concentration on electromagnetic-assisted oil recovery using ZnO nanofluids. Adil M; Lee K; Mohd Zaid H; A Shukur MF; Manaka T PLoS One; 2020; 15(12):e0244738. PubMed ID: 33382855 [TBL] [Abstract][Full Text] [Related]
10. Role of Phase-Dependent Dielectric Properties of Alumina Nanoparticles in Electromagnetic-Assisted Enhanced Oil Recovery. Adil M; Lee KC; Zaid HM; Manaka T Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036153 [TBL] [Abstract][Full Text] [Related]
11. Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR). Razavirad F; Shahrabadi A; Babakhani Dehkordi P; Rashidi A Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010052 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of colloidal silica nanofluid and assessment of its impact on interfacial tension (IFT) and wettability for enhanced oil recovery (EOR). Mansouri Zadeh M; Amiri F; Hosseni S; Ghamarpoor R Sci Rep; 2024 Jan; 14(1):325. PubMed ID: 38172240 [TBL] [Abstract][Full Text] [Related]
13. Recovery Observations from Alkali, Nanoparticles and Polymer Flooding as Combined Processes. Hincapie RE; Borovina A; Neubauer E; Tahir M; Saleh S; Arekhov V; Biernat M; Clemens T Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160592 [TBL] [Abstract][Full Text] [Related]
14. Effect of Salinity on Hydroxyapatite Nanoparticles Flooding in Enhanced Oil Recovery: A Mechanistic Study. Ngouangna EN; Jaafar MZ; Norddin M; Agi A; Yakasai F; Oseh JO; Mamah SC; Yahya MN; Al-Ani M ACS Omega; 2023 May; 8(20):17819-17833. PubMed ID: 37251146 [TBL] [Abstract][Full Text] [Related]
15. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery. Zhao J; Wen D RSC Adv; 2017 Aug; 7(66):41391-41398. PubMed ID: 29308190 [TBL] [Abstract][Full Text] [Related]
16. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel. Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925 [TBL] [Abstract][Full Text] [Related]
17. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications. Li S; Ng YH; Lau HC; Torsæter O; Stubbs LP Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759669 [TBL] [Abstract][Full Text] [Related]
18. Coupling Microfluidics Data with Core Flooding Experiments to Understand Sulfonated/Polymer Water Injection. Tahir M; Hincapie RE; Langanke N; Ganzer L; Jaeger P Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32481627 [TBL] [Abstract][Full Text] [Related]
19. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855 [TBL] [Abstract][Full Text] [Related]
20. Experimental Investigation of the Effect of Adding Nanoparticles to Polymer Flooding in Water-Wet Micromodels. Rueda E; Akarri S; Torsæter O; Moreno RBZL Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]