BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33803642)

  • 1. Comparison of the Genetic Features Involved in
    Dergham Y; Sanchez-Vizuete P; Le Coq D; Deschamps J; Bridier A; Hamze K; Briandet R
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33803642
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Dergham Y; Le Coq D; Bridier A; Sanchez-Vizuete P; Jbara H; Deschamps J; Hamze K; Yoshida KI; Noirot-Gros MF; Briandet R
    Biofilm; 2023 Dec; 6():100152. PubMed ID: 37694162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
    Bridier A; Le Coq D; Dubois-Brissonnet F; Thomas V; Aymerich S; Briandet R
    PLoS One; 2011 Jan; 6(1):e16177. PubMed ID: 21267464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The coordinated population redistribution between
    Sanchez-Vizuete P; Dergham Y; Bridier A; Deschamps J; Dervyn E; Hamze K; Aymerich S; Le Coq D; Briandet R
    Biofilm; 2022 Dec; 4():100065. PubMed ID: 35024609
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities.
    Sanchez-Vizuete P; Le Coq D; Bridier A; Herry JM; Aymerich S; Briandet R
    Appl Environ Microbiol; 2015 Jan; 81(1):109-18. PubMed ID: 25326298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development.
    Hölscher T; Bartels B; Lin YC; Gallegos-Monterrosa R; Price-Whelan A; Kolter R; Dietrich LEP; Kovács ÁT
    J Mol Biol; 2015 Nov; 427(23):3695-3708. PubMed ID: 26122431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6S-2 RNA deletion in the undomesticated
    Thüring M; Ganapathy S; Schlüter MAC; Lechner M; Hartmann RK
    RNA Biol; 2021 Jan; 18(1):79-92. PubMed ID: 32862759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes.
    Kobayashi K
    J Bacteriol; 2007 Jul; 189(13):4920-31. PubMed ID: 17468240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability.
    Kampf J; Gerwig J; Kruse K; Cleverley R; Dormeyer M; Grünberger A; Kohlheyer D; Commichau FM; Lewis RJ; Stülke J
    mBio; 2018 Sep; 9(5):. PubMed ID: 30181249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactin production is not essential for pellicle and root-associated biofilm development of
    Thérien M; Kiesewalter HT; Auria E; Charron-Lamoureux V; Wibowo M; Maróti G; Kovács ÁT; Beauregard PB
    Biofilm; 2020 Dec; 2():100021. PubMed ID: 33447807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography and Expansion Patterns at the Biofilm-Agar Interface in
    Gingichashvili S; Feuerstein O; Steinberg D
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33396528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
    Gallegos-Monterrosa R; Mhatre E; Kovács ÁT
    Microbiology (Reading); 2016 Nov; 162(11):1922-1932. PubMed ID: 27655338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal.
    Schreiber F; Beutler M; Enning D; Lamprecht-Grandio M; Zafra O; González-Pastor JE; de Beer D
    BMC Microbiol; 2011 May; 11():111. PubMed ID: 21599925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative modes of biofilm formation by plant-associated Bacillus cereus.
    Gao T; Foulston L; Chai Y; Wang Q; Losick R
    Microbiologyopen; 2015 Jun; 4(3):452-64. PubMed ID: 25828975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains.
    Chollet-Imbert M; Gancel F; Slomianny C; Jacques P
    Arch Microbiol; 2009 Jan; 191(1):63-71. PubMed ID: 18795262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis.
    Kobayashi K
    Mol Microbiol; 2008 Sep; 69(6):1399-410. PubMed ID: 18647168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.
    Ray VA; Morris AR; Visick KL
    J Vis Exp; 2012 Jun; (64):e4035. PubMed ID: 22710417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of eps genes from Bacillus subtilis in biofilm formation and swarming.
    Nagorska K; Ostrowski A; Hinc K; Holland IB; Obuchowski M
    J Appl Genet; 2010; 51(3):369-81. PubMed ID: 20720312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
    Kobayashi K; Iwano M
    Mol Microbiol; 2012 Jul; 85(1):51-66. PubMed ID: 22571672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.