These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33803689)

  • 1. Fabrication Methods for Microfluidic Devices: An Overview.
    Scott SM; Ali Z
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices.
    Zhang N; Liu J; Zhang H; Kent NJ; Diamond D; D Gilchrist M
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31510027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Polymer Microfluidics: An Overview.
    Juang YJ; Chiu YJ
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disposable Optical Stretcher Fabricated by Microinjection Moulding.
    Trotta G; Martínez Vázquez R; Volpe A; Modica F; Ancona A; Fassi I; Osellame R
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication of microchannel structures in WC-Co feedstock using elastomeric replica moulds by hot embossing process.
    Sahli M; Gelin JC; Barrière T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():252-66. PubMed ID: 26117760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Droplet Structure Machining for Advanced Optics.
    Guo JK; Sandaruwan WDN; Li J; Ling J; Yuan Y; Liu X; Li Q; Wang X
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation.
    Hsieh YK; Chen SC; Huang WL; Hsu KP; Gorday KAV; Wang T; Wang J
    Polymers (Basel); 2017 Jun; 9(7):. PubMed ID: 30970919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems.
    Boutiette AL; Toothaker C; Corless B; Boukaftane C; Howell C
    PLoS One; 2020; 15(12):e0244324. PubMed ID: 33370381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature roll-to-roll additive manufacturing of polydimethylsiloxane-based centrifugal microfluidic device for on-site isolation of ribonucleic acid from whole blood.
    Hoang T; Truong H; Han J; Lee S; Lee J; Parajuli S; Lee J; Cho G
    Mater Today Bio; 2023 Dec; 23():100838. PubMed ID: 38033369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfabrication of chip-sized scaffolds for three-dimensional cell cultivation.
    Giselbrecht S; Gottwald E; Truckenmueller R; Trautmann C; Welle A; Guber A; Saile V; Gietzelt T; Weibezahn KF
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on inertial microfluidic fabrication methods.
    Akbari Z; Raoufi MA; Mirjalali S; Aghajanloo B
    Biomicrofluidics; 2023 Sep; 17(5):051504. PubMed ID: 37869745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal Micromachining Platform and Basic Technologies for the Manufacture and Marking of Microphysiological Systems.
    Günther K; Sonntag F; Moritzer E; Hirsch A; Klotzbach U; Lasagni AF
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.