BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33803866)

  • 1. A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO
    Marques I; Fernandes I; Paulo OS; Lidon FC; DaMatta FM; Ramalho JC; Ribeiro-Barros AI
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species.
    Rodrigues WP; Martins MQ; Fortunato AS; Rodrigues AP; Semedo JN; Simões-Costa MC; Pais IP; Leitão AE; Colwell F; Goulao L; Máguas C; Maia R; Partelli FL; Campostrini E; Scotti-Campos P; Ribeiro-Barros AI; Lidon FC; DaMatta FM; Ramalho JC
    Glob Chang Biol; 2016 Jan; 22(1):415-31. PubMed ID: 26363182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO
    Marques I; Fernandes I; David PHC; Paulo OS; Goulao LF; Fortunato AS; Lidon FC; DaMatta FM; Ramalho JC; Ribeiro-Barros AI
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2].
    Semedo JN; Rodrigues AP; Lidon FC; Pais IP; Marques I; Gouveia D; Armengaud J; Silva MJ; Martins S; Semedo MC; Dubberstein D; Partelli FL; Reboredo FH; Scotti-Campos P; Ribeiro-Barros AI; DaMatta FM; Ramalho JC
    Tree Physiol; 2021 May; 41(5):708-727. PubMed ID: 33215189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature.
    Bardil A; de Almeida JD; Combes MC; Lashermes P; Bertrand B
    New Phytol; 2011 Nov; 192(3):760-74. PubMed ID: 21797880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective Responses at the Biochemical and Molecular Level Differ between a
    Vinci G; Marques I; Rodrigues AP; Martins S; Leitão AE; Semedo MC; Silva MJ; Lidon FC; DaMatta FM; Ribeiro-Barros AI; Ramalho JC
    Plants (Basel); 2022 Oct; 11(20):. PubMed ID: 36297726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.
    Yuyama PM; Reis Júnior O; Ivamoto ST; Domingues DS; Carazzolle MF; Pereira GA; Charmetant P; Leroy T; Pereira LF
    Mol Genet Genomics; 2016 Feb; 291(1):323-36. PubMed ID: 26334613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress.
    Marraccini P; Freire LP; Alves GS; Vieira NG; Vinecky F; Elbelt S; Ramos HJ; Montagnon C; Vieira LG; Leroy T; Pot D; Silva VA; Rodrigues GC; Andrade AC
    BMC Plant Biol; 2011 May; 11():85. PubMed ID: 21575242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents.
    Bertrand B; Bardil A; Baraille H; Dussert S; Doulbeau S; Dubois E; Severac D; Dereeper A; Etienne H
    Plant Cell Physiol; 2015 Oct; 56(10):2035-51. PubMed ID: 26355011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of Water-Responsive Genes Promoted by Elevated CO
    Marques I; Fernandes I; Paulo OS; Batista D; Lidon FC; Partelli F; DaMatta FM; Ribeiro-Barros AI; Ramalho JC
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora.
    Mondego JM; Vidal RO; Carazzolle MF; Tokuda EK; Parizzi LP; Costa GG; Pereira LF; Andrade AC; Colombo CA; Vieira LG; Pereira GA;
    BMC Plant Biol; 2011 Feb; 11():30. PubMed ID: 21303543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures.
    Combes MC; Dereeper A; Severac D; Bertrand B; Lashermes P
    New Phytol; 2013 Oct; 200(1):251-260. PubMed ID: 23790161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea).
    Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R
    Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of cold on photosynthesis in genotypes of Coffea spp.--photosystem sensitivity, photoprotective mechanisms and gene expression.
    Batista-Santos P; Lidon FC; Fortunato A; Leitão AE; Lopes E; Partelli F; Ribeiro AI; Ramalho JC
    J Plant Physiol; 2011 May; 168(8):792-806. PubMed ID: 21247660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].
    Ramalho JC; Rodrigues AP; Semedo JN; Pais IP; Martins LD; Simões-Costa MC; Leitão AE; Fortunato AS; Batista-Santos P; Palos IM; Tomaz MA; Scotti-Campos P; Lidon FC; DaMatta FM
    PLoS One; 2013; 8(12):e82712. PubMed ID: 24324823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introgressive hybridization between the allotetraploid Coffea arabica and one of its diploid ancestors, Coffea canephora, in an exceptional sympatric zone in New Caledonia.
    Mahé L; Le Pierrès D; Combes MC; Lashermes P
    Genome; 2007 Mar; 50(3):316-24. PubMed ID: 17502905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and Validation of Reference Genes for Accurate RT-qPCR Data Normalization in
    Martins MQ; Fortunato AS; Rodrigues WP; Partelli FL; Campostrini E; Lidon FC; DaMatta FM; Ramalho JC; Ribeiro-Barros AI
    Front Plant Sci; 2017; 8():307. PubMed ID: 28326094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming and elevated CO
    Huang Y; Fang R; Li Y; Liu X; Wang G; Yin K; Jin J; Herbert SJ
    Sci Rep; 2019 Nov; 9(1):17948. PubMed ID: 31784668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.
    Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F
    J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early growth phase and caffeine content response to recent and projected increases in atmospheric carbon dioxide in coffee (Coffea arabica and C. canephora).
    Vega FE; Ziska LH; Simpkins A; Infante F; Davis AP; Rivera JA; Barnaby JY; Wolf J
    Sci Rep; 2020 Apr; 10(1):5875. PubMed ID: 32246092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.