BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33803967)

  • 41. Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device.
    Ma J; Li N; Wang Y; Wang L; Wei W; Shen L; Sun Y; Jiao Y; Chen W; Liu J
    Biomed Microdevices; 2018 Sep; 20(3):80. PubMed ID: 30191323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening.
    Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P
    Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics.
    Lee D; Cha C
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110932. PubMed ID: 32409080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of the spheroid model complexity on drug response.
    Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B
    J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids.
    Herrmann R; Fayad W; Schwarz S; Berndtsson M; Linder S
    J Biomol Screen; 2008 Jan; 13(1):1-8. PubMed ID: 18040052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishment of Microfluidic Spheroid Cultures for Biomedical Applications.
    Kwapiszewska K
    Methods Mol Biol; 2018; 1771():213-224. PubMed ID: 29633216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A vascularized breast cancer spheroid platform for the ranked evaluation of tumor microenvironment-targeted drugs by light sheet fluorescence microscopy.
    Ascheid D; Baumann M; Pinnecker J; Friedrich M; Szi-Marton D; Medved C; Bundalo M; Ortmann V; Öztürk A; Nandigama R; Hemmen K; Ergün S; Zernecke A; Hirth M; Heinze KG; Henke E
    Nat Commun; 2024 Apr; 15(1):3599. PubMed ID: 38678014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robotic printing and drug testing of 384-well tumor spheroids.
    Ham SL; Thakuri PS; Tavana H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment.
    Pedron S; Becka E; Harley BA
    Adv Mater; 2015 Mar; 27(9):1567-72. PubMed ID: 25521283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A rapid high throughput bioprinted colorectal cancer spheroid platform for
    Johnson PA; Menegatti S; Chambers AC; Alibhai D; Collard TJ; Williams AC; Bayley H; Perriman AW
    Biofabrication; 2022 Nov; 15(1):. PubMed ID: 36321254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Patterning hypoxic multicellular spheroids in a 3D matrix - a promising method for anti-tumor drug screening.
    Ma J; Zhang X; Liu Y; Yu H; Liu L; Shi Y; Li Y; Qin J
    Biotechnol J; 2016 Jan; 11(1):127-34. PubMed ID: 26647062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and characterization of a microfluidic model of the tumour microenvironment.
    Ayuso JM; Virumbrales-Muñoz M; Lacueva A; Lanuza PM; Checa-Chavarria E; Botella P; Fernández E; Doblare M; Allison SJ; Phillips RM; Pardo J; Fernandez LJ; Ochoa I
    Sci Rep; 2016 Oct; 6():36086. PubMed ID: 27796335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-Dimensional Aggregated Spheroid Model of Hepatocellular Carcinoma Using a 96-Pillar/Well Plate.
    Lee SY; Teng Y; Son M; Ku B; Hwang HJ; Tergaonkar V; Chow PK; Lee DW; Nam DH
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443536
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Issues with Cancer Spheroid Models in Therapeutic Drug Screening.
    Fröhlich E
    Curr Pharm Des; 2020; 26(18):2137-2148. PubMed ID: 32067603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.