These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33804035)

  • 21. CyberSentinel: A Transparent Defense Framework for Malware Detection in High-Stakes Operational Environments.
    Basak M; Han MM
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning based Sequential model for malware analysis using Windows exe API Calls.
    Catak FO; Yazı AF; Elezaj O; Ahmed J
    PeerJ Comput Sci; 2020; 6():e285. PubMed ID: 33816936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization.
    Ullah F; Srivastava G; Ullah S
    J Cloud Comput (Heidelb); 2022; 11(1):75. PubMed ID: 36345308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AndroDex: Android Dex Images of Obfuscated Malware.
    Aurangzeb S; Aleem M; Khan MT; Loukas G; Sakellari G
    Sci Data; 2024 Feb; 11(1):212. PubMed ID: 38365866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance evaluation of deep neural network on malware detection: visual feature approach.
    Anandhi V; Vinod P; Menon VG; Aditya KM
    Cluster Comput; 2022; 25(6):4601-4615. PubMed ID: 35999895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digital Forensics for Malware Classification: An Approach for Binary Code to Pixel Vector Transition.
    Naeem MR; Amin R; Alshamrani SS; Alshehri A
    Comput Intell Neurosci; 2022; 2022():6294058. PubMed ID: 35498213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hybrid Analysis-Based Approach to Android Malware Family Classification.
    Ding C; Luktarhan N; Lu B; Zhang W
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biserial Miyaguchi-Preneel Blockchain-Based Ruzicka-Indexed Deep Perceptive Learning for Malware Detection in IoMT.
    Alotaibi AS
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model.
    Naeem H; Alshammari BM; Ullah F
    Comput Intell Neurosci; 2022; 2022():7671967. PubMed ID: 35875737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rise of obfuscated Android malware and impacts on detection methods.
    Elsersy WF; Feizollah A; Anuar NB
    PeerJ Comput Sci; 2022; 8():e907. PubMed ID: 35494876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MalFuzz: Coverage-guided fuzzing on deep learning-based malware classification model.
    Liu Y; Yang P; Jia P; He Z; Luo H
    PLoS One; 2022; 17(9):e0273804. PubMed ID: 36107957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PAFE: A lightweight visualization-based fast malware classification method.
    Li S; Wang J; Wang S; Song Y
    Heliyon; 2024 Aug; 10(16):e35965. PubMed ID: 39224347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep feature transfer learning for trusted and automated malware signature generation in private cloud environments.
    Nahmias D; Cohen A; Nissim N; Elovici Y
    Neural Netw; 2020 Apr; 124():243-257. PubMed ID: 32028053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature Subset Selection for Malware Detection in Smart IoT Platforms.
    Abawajy J; Darem A; Alhashmi AA
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the evaluation of android malware detectors against code-obfuscation techniques.
    Nawaz U; Aleem M; Lin JC
    PeerJ Comput Sci; 2022; 8():e1002. PubMed ID: 35875645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A detection method for android application security based on TF-IDF and machine learning.
    Yuan H; Tang Y; Sun W; Liu L
    PLoS One; 2020; 15(9):e0238694. PubMed ID: 32915836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intelligent malware detection based on graph convolutional network.
    Li S; Zhou Q; Zhou R; Lv Q
    J Supercomput; 2022; 78(3):4182-4198. PubMed ID: 34456504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CSMC: A Secure and Efficient Visualized Malware Classification Method Inspired by Compressed Sensing.
    Wu W; Peng H; Zhu H; Zhang D
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39001035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Malware Classification Models for Heterogeneous Data.
    Bae H
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Malware Detection in Internet of Things (IoT) Devices Using Deep Learning.
    Riaz S; Latif S; Usman SM; Ullah SS; Algarni AD; Yasin A; Anwar A; Elmannai H; Hussain S
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.