These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33804089)

  • 41. Surface modification of polymeric foams for oil spills remediation.
    Pinto J; Athanassiou A; Fragouli D
    J Environ Manage; 2018 Jan; 206():872-889. PubMed ID: 29202435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer.
    Borreguero AM; Zamora J; Garrido I; Carmona M; Rodríguez JF
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams.
    Paciorek-Sadowska J; Borowicz M; Isbrandt M
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties.
    Shi H; Shi D; Yin L; Yang Z; Luan S; Gao J; Zha J; Yin J; Li RK
    Nanoscale; 2014 Nov; 6(22):13748-53. PubMed ID: 25285907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduced Graphene Oxide-Doped Porous Thermoplastic Polyurethane Sponges for Highly Efficient Oil/Water Separation.
    Chen X; Zhang J; Chen X; Zhu Y; Liu X
    ACS Omega; 2023 Mar; 8(11):10487-10492. PubMed ID: 36969439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Durable Superhydrophobic Polymer Foams Fabricated by Extrusion and Supercritical CO
    Mi HY; Jing X; Liu Y; Li L; Li H; Peng XF; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7479-7487. PubMed ID: 30672685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material.
    Cui Z; He W; Liu J; Wei W; Jiang L; Huang J; Lv X
    Water Sci Technol; 2016 Oct; 74(8):1936-1945. PubMed ID: 27789894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam.
    Hou J; Zhao G; Zhang L; Wang G; Li B
    J Colloid Interface Sci; 2019 Apr; 542():233-242. PubMed ID: 30763890
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preventing the Collapse Behavior of Polyurethane Foams with the Addition of Cellulose Nanofiber.
    Ju S; Lee A; Shin Y; Jang H; Yi JW; Oh Y; Jo NJ; Park T
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oil/Water Mixtures and Emulsions Separation Methods-An Overview.
    José MH; Canejo JP; Godinho MH
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation on Compression Mechanical Properties of Rigid Polyurethane Foam Treated under Random Vibration Condition: An Experimental and Numerical Simulation Study.
    Qiu D; He Y; Yu Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler.
    Uram K; Leszczyńska M; Prociak A; Czajka A; Gloc M; Leszczyński MK; Michałowski S; Ryszkowska J
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of rubber powder waste as reinforcement of the polyurethane derived from castor oil.
    Silva NGS; Cortat LICO; Orlando D; Mulinari DR
    Waste Manag; 2020 Oct; 116():131-139. PubMed ID: 32799094
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces.
    Samadi S; Yazd SS; Abdoli H; Jafari P; Aliabadi M
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):370-376. PubMed ID: 28705506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface.
    Oh YS; Maeng J; Kim SJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):418-23. PubMed ID: 11030581
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Durable Superhydrophobic/Superoleophilic Graphene-Based Foam for High-Efficiency Oil Spill Cleanups and Recovery.
    Chen C; Zhu X; Chen B
    Environ Sci Technol; 2019 Feb; 53(3):1509-1517. PubMed ID: 30612426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties.
    Strąkowska A; Członka S; Kairytė A; Strzelec K
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33803963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams.
    Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery.
    Tan J; Li W; Ma C; Wu Q; Xu Z; Liu S
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Oil Removal from Water-in-Oil Stable Emulsions Using PU Foams.
    Barroso-Solares S; Pinto J; Fragouli D; Athanassiou A
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.