These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33804284)

  • 1. Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper.
    Lin L; Wu H; Xue L; Shen H; Huang H; Chen L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33804284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Thermal-Mechanical Modelling and Experimental Validation of a Three-Dimensional (3D) Electrothermal Microgripper with Three Fingers.
    Si G; Sun L; Zhang Z; Zhang X
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper for the Deformability Characterisation of Human Red Blood Cells.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Analysis of a CSFH-Based Microgripper: Analytical Modeling and Simulation.
    Yallew TS; Belfiore NP; Bagolini A; Pantano MF
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom.
    Si G; Sun L; Zhang Z; Zhang X
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33921177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Analysis of a Light-Operated Microgripper Using an Opto-Electrostatic Repulsive Combined Actuator.
    Huang J; Jiang C; Li G; Lu Q; Chen H
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Electrothermal Microgrippers Based on a Rotary Actuator System.
    Vargas-Chable P; Tecpoyotl-Torres M; Vera-Dimas G; Grimalsky V; Mireles García J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Finite Element-Finite Volume Multi-Physics Analysis of MEMS Electrothermal Actuators.
    Sciberras T; Demicoli M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and analysis of a microgripper for trans-scale clamping based on a compliant multistable mechanism.
    Hu L; Wang H; Wang G; Liang W
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38526441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper.
    Chen X; Deng Z; Hu S; Gao J; Gao X
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31878252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of four-jaws microgripper with integrated thermal actuator and force sensor for biomedical applications.
    Saba R; Iqbal S; Shakoor RI; Saleem MM; Bazaz SA
    Rev Sci Instrum; 2021 Apr; 92(4):045007. PubMed ID: 34243476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation.
    Sun X; Chen W; Tian Y; Fatikow S; Zhou R; Zhang J; Mikczinski M
    Rev Sci Instrum; 2013 Aug; 84(8):085002. PubMed ID: 24007097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Z-Shaped Electrothermal Microgripper Based on Novel Asymmetric Actuator.
    Tecpoyotl-Torres M; Vargas-Chable P; Escobedo-Alatorre J; Cisneros-Villalobos L; Sarabia-Vergara J
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation.
    Hong Y; Wu Y; Jin S; Liu D; Chi B
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Untethered microgripper-the dexterous hand at microscale.
    Yin C; Wei F; Zhan Z; Zheng J; Yao L; Yang W; Li M
    Biomed Microdevices; 2019 Aug; 21(4):82. PubMed ID: 31418070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Hybrid Position/Force Control of a Dual-Drive Macro-Fiber-Composite Microgripper.
    Zhang J; Yang Y; Lou J; Wei Y; Fu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure.
    Chai Y; Liang S; Zhou Y; Lin L; Fu F
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Actuated Microgripper Using Optimized Chevron-Shaped Actuator.
    Ahmad B; Chambon H; Tissier P; Bolopion A
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat-fluid-solid coupling heat transfer analysis and parameter optimization in walnut drying device based on finite element method.
    Li S; Qi J; Wu L; Wei X; Yuan L; Lin H
    Heliyon; 2024 Feb; 10(3):e24931. PubMed ID: 38317993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.