BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33804871)

  • 1. How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes.
    Lee IG; Lee BJ
    Antioxidants (Basel); 2021 Mar; 10(4):. PubMed ID: 33804871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial redox sensors.
    Green J; Paget MS
    Nat Rev Microbiol; 2004 Dec; 2(12):954-66. PubMed ID: 15550941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment.
    Haddad JJ
    Int Immunopharmacol; 2004 Apr; 4(4):475-93. PubMed ID: 15099526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of cellular signalling.
    Kamata H; Hirata H
    Cell Signal; 1999 Jan; 11(1):1-14. PubMed ID: 10206339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses.
    Farooq MA; Niazi AK; Akhtar J; Saifullah ; Farooq M; Souri Z; Karimi N; Rengel Z
    Plant Physiol Biochem; 2019 Aug; 141():353-369. PubMed ID: 31207496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduce, Induce, Thrive: Bacterial Redox Sensing during Pathogenesis.
    Reniere ML
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29891640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione, stress responses, and redox signaling in lung inflammation.
    Rahman I; Biswas SK; Jimenez LA; Torres M; Forman HJ
    Antioxid Redox Signal; 2005; 7(1-2):42-59. PubMed ID: 15650395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisomes and Cellular Oxidant/Antioxidant Balance: Protein Redox Modifications and Impact on Inter-organelle Communication.
    Fransen M; Lismont C
    Subcell Biochem; 2018; 89():435-461. PubMed ID: 30378035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The redox biology network in cancer pathophysiology and therapeutics.
    Manda G; Isvoranu G; Comanescu MV; Manea A; Debelec Butuner B; Korkmaz KS
    Redox Biol; 2015 Aug; 5():347-357. PubMed ID: 26122399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Promiscuity in H
    Young D; Pedre B; Ezeriņa D; De Smet B; Lewandowska A; Tossounian MA; Bodra N; Huang J; Astolfi Rosado L; Van Breusegem F; Messens J
    Antioxid Redox Signal; 2019 Apr; 30(10):1285-1324. PubMed ID: 29635930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins.
    Bigelow DJ; Squier TC
    Biochim Biophys Acta; 2005 Jan; 1703(2):121-34. PubMed ID: 15680220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Redox Sensitivity in Structurally Similar Biological Redox Sensors.
    Jamithireddy AK; Samajdar RN; Gopal B; Bhattacharyya AJ
    J Phys Chem B; 2017 Jul; 121(29):7005-7015. PubMed ID: 28657321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Small-Molecule Tools for the Imaging of Redox Biology.
    Kaur A; New EJ
    Acc Chem Res; 2019 Mar; 52(3):623-632. PubMed ID: 30747522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria.
    Bonilla CY
    Integr Comp Biol; 2020 Jul; 60(1):126-133. PubMed ID: 32044998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of the Redox Status of Cytosolic Glutathione Using the Organelle- and Cytoskeleton-Targeted Redox Sensors.
    Hatori Y; Kubo T; Sato Y; Inouye S; Akagi R; Seyama T
    Antioxidants (Basel); 2020 Feb; 9(2):. PubMed ID: 32028573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative Signaling Response to Cadmium Exposure.
    Nemmiche S
    Toxicol Sci; 2017 Mar; 156(1):4-10. PubMed ID: 27803385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in
    Aramin S; Fassler R; Chikne V; Goldenberg M; Arian T; Kolet Eliaz L; Rimon O; Ram O; Michaeli S; Reichmann D
    Front Microbiol; 2020; 11():1844. PubMed ID: 32849441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.