These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33805043)

  • 1. Formation of Li
    Park TW; Kang YL; Lee SH; No GW; Park ES; Park C; Lee J; Park WI
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.
    Dash R; Pannala S
    Sci Rep; 2016 Jun; 6():27449. PubMed ID: 27311811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li
    Li C; Xiao Y; Zhang X; Cheng H; Cheng YJ; Xia Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44921-44931. PubMed ID: 37708444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes.
    Muraleedharan Pillai M; Kalidas N; Zhao X; Lehto VP
    Front Chem; 2022; 10():882081. PubMed ID: 35601553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon quantum dots inlaid micron graphite anode for fast chargeable and high energy density Li-ion batteries.
    Li H; Buckingham MA
    Front Chem; 2022; 10():1091268. PubMed ID: 36561146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in Iron Oxides Based Nanostructures for Applications in Energy Storage.
    Lv L; Peng M; Wu L; Dong Y; You G; Duan Y; Yang W; He L; Liu X
    Nanoscale Res Lett; 2021 Aug; 16(1):138. PubMed ID: 34463837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for rechargeable lithium-ion batteries.
    Hayner CM; Zhao X; Kung HH
    Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.
    Chen G; Yan L; Luo H; Guo S
    Adv Mater; 2016 Sep; 28(35):7580-602. PubMed ID: 27302769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Performance and Microstructure Evolution of a Quasi-Solid-State Lithium Battery Prepared by Spark Plasma Sintering.
    Li J; Tong H; Zhou W; Liu J; Song X
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8045-8054. PubMed ID: 38316124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Multiscale Pattern Structures by Combined Patterning of Nanotransfer Printing and Laser Micromachining.
    Park TW; Kang YL; Kang EB; Kim S; Kim YN; Park WI
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries.
    Thauer E; Ottmann A; Schneider P; Möller L; Deeg L; Zeus R; Wilhelmi F; Schlestein L; Neef C; Ghunaim R; Gellesch M; Nowka C; Scholz M; Haft M; Wurmehl S; Wenelska K; Mijowska E; Kapoor A; Bajpai A; Hampel S; Klingeler R
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32120977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries.
    Zhao X; Lehto VP
    Nanotechnology; 2021 Jan; 32(4):042002. PubMed ID: 32927440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Electrical Degradation of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries.
    Kim SH; Kim YS; Baek WJ; Heo S; Yun DJ; Han S; Jung H
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24549-24553. PubMed ID: 29944824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium titanate nanoplates embedded with graphene quantum dots as electrode materials for high-rate lithium-ion batteries.
    Zhao Y; Xu S; Zhou K; Tian T; Yang Z; Su Y; Wang Y; Zhang Y; Hu N
    Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34517362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.