BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33805062)

  • 1. Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications.
    Yoo H; Heo K; Ansari MHR; Cho S
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33805062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Thin-Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers.
    Lin YC; Torsi R; Geohegan DB; Robinson JA; Xiao K
    Adv Sci (Weinh); 2021 May; 8(9):2004249. PubMed ID: 33977064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides.
    Jariwala D; Sangwan VK; Lauhon LJ; Marks TJ; Hersam MC
    ACS Nano; 2014 Feb; 8(2):1102-20. PubMed ID: 24476095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides.
    Fang M; Yang EH
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal
    Zhang T; Fujisawa K; Zhang F; Liu M; Lucking MC; Gontijo RN; Lei Y; Liu H; Crust K; Granzier-Nakajima T; Terrones H; Elías AL; Terrones M
    ACS Nano; 2020 Apr; 14(4):4326-4335. PubMed ID: 32208674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Nanoarchitectonics for Two-Dimensional Materials: Interfacial Engineering of Transition-Metal Dichalcogenides.
    Shinde PA; Ariga K
    Langmuir; 2023 Dec; 39(50):18175-18186. PubMed ID: 38047629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Point Defects in Atomically Thin Transition-Metal Dichalcogenide Semiconductors as Active Dopants.
    Seo SY; Yang DH; Moon G; Okello OFN; Park MY; Lee SH; Choi SY; Jo MH
    Nano Lett; 2021 Apr; 21(8):3341-3354. PubMed ID: 33825482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processable 2D semiconductors for high-performance large-area electronics.
    Lin Z; Liu Y; Halim U; Ding M; Liu Y; Wang Y; Jia C; Chen P; Duan X; Wang C; Song F; Li M; Wan C; Huang Y; Duan X
    Nature; 2018 Oct; 562(7726):254-258. PubMed ID: 30283139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially controlled lateral heterostructures of graphene and transition metal dichalcogenides toward atomically thin and multi-functional electronics.
    Kim G; Shin HS
    Nanoscale; 2020 Mar; 12(9):5286-5292. PubMed ID: 32083259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus.
    Ryder CR; Wood JD; Wells SA; Hersam MC
    ACS Nano; 2016 Apr; 10(4):3900-17. PubMed ID: 27018800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
    Wang QH; Kalantar-Zadeh K; Kis A; Coleman JN; Strano MS
    Nat Nanotechnol; 2012 Nov; 7(11):699-712. PubMed ID: 23132225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects.
    Schmidt H; Giustiniano F; Eda G
    Chem Soc Rev; 2015 Nov; 44(21):7715-36. PubMed ID: 26088725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress on Two-Dimensional Transitional Metal Dichalcogenides Alloy Materials: Growth, Characterisation, and Optoelectronic Applications.
    Yu J; Wu S; Zhao X; Li Z; Yang X; Shen Q; Lu M; Xie X; Zhan D; Yan J
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Two-Dimensional Materials beyond Graphene.
    Bhimanapati GR; Lin Z; Meunier V; Jung Y; Cha J; Das S; Xiao D; Son Y; Strano MS; Cooper VR; Liang L; Louie SG; Ringe E; Zhou W; Kim SS; Naik RR; Sumpter BG; Terrones H; Xia F; Wang Y; Zhu J; Akinwande D; Alem N; Schuller JA; Schaak RE; Terrones M; Robinson JA
    ACS Nano; 2015 Dec; 9(12):11509-39. PubMed ID: 26544756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides.
    Bertolazzi S; Gobbi M; Zhao Y; Backes C; Samorì P
    Chem Soc Rev; 2018 Aug; 47(17):6845-6888. PubMed ID: 30043037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning and doping of transition metals in tungsten dichalcogenides.
    Lin YC; Chang YP; Chen KW; Lee TT; Hsiao BJ; Tsai TH; Yang YC; Lin KI; Suenaga K; Chen CH; Chiu PW
    Nanoscale; 2022 Nov; 14(45):16968-16977. PubMed ID: 36350092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides.
    Guan H; Zhao B; Zhao W; Ni Z
    Mater Horiz; 2023 Apr; 10(4):1105-1120. PubMed ID: 36628937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications.
    Mia AK; Meyyappan M; Giri PK
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers.
    Feng S; Lin Z; Gan X; Lv R; Terrones M
    Nanoscale Horiz; 2017 Mar; 2(2):72-80. PubMed ID: 32260668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.