These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33805496)

  • 1. Influence of Colloidal Au on the Growth of ZnO Nanostructures.
    Güell F; Cabot A; Claramunt S; Moghaddam AO; Martínez-Alanis PR
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33805496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures.
    Govatsi K; Chrissanthopoulos A; Dracopoulos V; Yannopoulos SN
    Nanotechnology; 2014 May; 25(21):215601. PubMed ID: 24784032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence of ZnO Nanowires: A Review.
    Galdámez-Martinez A; Santana G; Güell F; Martínez-Alanis PR; Dutt A
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy.
    Güell F; Ossó JO; Goñi AR; Cornet A; Morante JR
    Nanotechnology; 2009 Aug; 20(31):315701. PubMed ID: 19597252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst.
    Dahiya AS; Opoku C; Alquier D; Poulin-Vittrant G; Cayrel F; Graton O; Hue LP; Camara N
    Nanoscale Res Lett; 2014; 9(1):379. PubMed ID: 25136283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One Dimensional ZnO Nanostructures: Growth and Chemical Sensing Performances.
    Moumen A; Kaur N; Poli N; Zappa D; Comini E
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and photoluminescence studies on catalytic growth of silicon/zinc oxide heterostructure nanowires.
    Chong SK; Dee CF; Abdul Rahman S
    Nanoscale Res Lett; 2013 Apr; 8(1):174. PubMed ID: 23590803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, Morphological, Electronic Structural, Optical, and Magnetic Properties of ZnO Nanostructures.
    Alnaim N; Kumar S; Alshoaibi A
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-Induced Au Catalyst Generation for Tailored ZnO Nanostructure Growth.
    Durbach S; Schniedermeyer L; Marx A; Hampp N
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple Growth of Faceted Au-ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and Triangular Nanoflakes): A Shape and Defect Driven Enhanced Photocatalytic Performance under Visible Light.
    Ghosh A; Guha P; Samantara AK; Jena BK; Bar R; Ray SK; Satyam PV
    ACS Appl Mater Interfaces; 2015 May; 7(18):9486-96. PubMed ID: 25895657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled synthesis of ultrathin ZnO nanowires using micellar gold nanoparticles as catalyst templates.
    Yin H; Wang Q; Geburt S; Milz S; Ruttens B; Degutis G; D'Haen J; Shan L; Punniyakoti S; D'Olieslaeger M; Wagner P; Ronning C; Boyen HG
    Nanoscale; 2013 Aug; 5(15):7046-53. PubMed ID: 23807664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method.
    Mute A; Peres M; Peiris TC; Lourenço AC; Jensen LR; Monteiro T
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2669-73. PubMed ID: 20355482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
    Shin HS; Sohn JI; Kim DC; Huck WT; Welland ME; Choi HC; Kang DJ
    Nanotechnology; 2009 Feb; 20(8):085601. PubMed ID: 19417449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.
    Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR
    Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.
    Ding Y; Gao PX; Wang ZL
    J Am Chem Soc; 2004 Feb; 126(7):2066-72. PubMed ID: 14971941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on the progress in the light-emitting mechanism of ZnO in the visible region].
    Wang JH; Xu CS; Xue XX; Zhao B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3205-9. PubMed ID: 25881409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.